{"title":"从数据中学习基于物理的模型:从反问题和模型简化的角度","authors":"O. Ghattas, K. Willcox","doi":"10.1017/S0962492921000064","DOIUrl":null,"url":null,"abstract":"This article addresses the inference of physics models from data, from the perspectives of inverse problems and model reduction. These fields develop formulations that integrate data into physics-based models while exploiting the fact that many mathematical models of natural and engineered systems exhibit an intrinsically low-dimensional solution manifold. In inverse problems, we seek to infer uncertain components of the inputs from observations of the outputs, while in model reduction we seek low-dimensional models that explicitly capture the salient features of the input–output map through approximation in a low-dimensional subspace. In both cases, the result is a predictive model that reflects data-driven learning yet deeply embeds the underlying physics, and thus can be used for design, control and decision-making, often with quantified uncertainties. We highlight recent developments in scalable and efficient algorithms for inverse problems and model reduction governed by large-scale models in the form of partial differential equations. Several illustrative applications to large-scale complex problems across different domains of science and engineering are provided.","PeriodicalId":48863,"journal":{"name":"Acta Numerica","volume":"30 1","pages":"445 - 554"},"PeriodicalIF":16.3000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":"{\"title\":\"Learning physics-based models from data: perspectives from inverse problems and model reduction\",\"authors\":\"O. Ghattas, K. Willcox\",\"doi\":\"10.1017/S0962492921000064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article addresses the inference of physics models from data, from the perspectives of inverse problems and model reduction. These fields develop formulations that integrate data into physics-based models while exploiting the fact that many mathematical models of natural and engineered systems exhibit an intrinsically low-dimensional solution manifold. In inverse problems, we seek to infer uncertain components of the inputs from observations of the outputs, while in model reduction we seek low-dimensional models that explicitly capture the salient features of the input–output map through approximation in a low-dimensional subspace. In both cases, the result is a predictive model that reflects data-driven learning yet deeply embeds the underlying physics, and thus can be used for design, control and decision-making, often with quantified uncertainties. We highlight recent developments in scalable and efficient algorithms for inverse problems and model reduction governed by large-scale models in the form of partial differential equations. Several illustrative applications to large-scale complex problems across different domains of science and engineering are provided.\",\"PeriodicalId\":48863,\"journal\":{\"name\":\"Acta Numerica\",\"volume\":\"30 1\",\"pages\":\"445 - 554\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"69\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Numerica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0962492921000064\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Numerica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0962492921000064","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Learning physics-based models from data: perspectives from inverse problems and model reduction
This article addresses the inference of physics models from data, from the perspectives of inverse problems and model reduction. These fields develop formulations that integrate data into physics-based models while exploiting the fact that many mathematical models of natural and engineered systems exhibit an intrinsically low-dimensional solution manifold. In inverse problems, we seek to infer uncertain components of the inputs from observations of the outputs, while in model reduction we seek low-dimensional models that explicitly capture the salient features of the input–output map through approximation in a low-dimensional subspace. In both cases, the result is a predictive model that reflects data-driven learning yet deeply embeds the underlying physics, and thus can be used for design, control and decision-making, often with quantified uncertainties. We highlight recent developments in scalable and efficient algorithms for inverse problems and model reduction governed by large-scale models in the form of partial differential equations. Several illustrative applications to large-scale complex problems across different domains of science and engineering are provided.
期刊介绍:
Acta Numerica stands as the preeminent mathematics journal, ranking highest in both Impact Factor and MCQ metrics. This annual journal features a collection of review articles that showcase survey papers authored by prominent researchers in numerical analysis, scientific computing, and computational mathematics. These papers deliver comprehensive overviews of recent advances, offering state-of-the-art techniques and analyses.
Encompassing the entirety of numerical analysis, the articles are crafted in an accessible style, catering to researchers at all levels and serving as valuable teaching aids for advanced instruction. The broad subject areas covered include computational methods in linear algebra, optimization, ordinary and partial differential equations, approximation theory, stochastic analysis, nonlinear dynamical systems, as well as the application of computational techniques in science and engineering. Acta Numerica also delves into the mathematical theory underpinning numerical methods, making it a versatile and authoritative resource in the field of mathematics.