关于分段局部周期算子的均匀化问题

IF 1.7 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
N. N. Senik
{"title":"关于分段局部周期算子的均匀化问题","authors":"N. N. Senik","doi":"10.1134/S1061920823020139","DOIUrl":null,"url":null,"abstract":"<p> We discuss homogenization of a strongly elliptic operator <span>\\(\\mathcal A^\\varepsilon=-\\operatorname{div}A(x,x/\\varepsilon_\\#)\\nabla\\)</span> on a bounded <span>\\(C^{1,1}\\)</span> domain in <span>\\(\\mathbb R^d\\)</span> with either Dirichlet or Neumann boundary condition. The function <span>\\(A\\)</span> is piecewise Lipschitz in the first variable and periodic in the second one, and the function <span>\\(\\varepsilon_\\#\\)</span> is identically equal to <span>\\(\\varepsilon_i(\\varepsilon)\\)</span> on each piece <span>\\(\\Omega_i\\)</span>, with <span>\\(\\varepsilon_i(\\varepsilon)\\to0\\)</span> as <span>\\(\\varepsilon\\to0\\)</span>. For <span>\\(\\mu\\)</span> in a resolvent set, we show that the resolvent <span>\\((\\mathcal A^\\varepsilon-\\mu)^{-1}\\)</span> converges, as <span>\\(\\varepsilon\\to0\\)</span>, in the operator norm on <span>\\(L_2(\\Omega)^n\\)</span> to the resolvent <span>\\((\\mathcal A^0-\\mu)^{-1}\\)</span> of the effective operator at the rate <span>\\(\\varepsilon_ {\\vee} \\)</span>, where <span>\\(\\varepsilon_ {\\vee} \\)</span> stands for the largest of <span>\\(\\varepsilon_i(\\varepsilon)\\)</span>. We also obtain an approximation for the resolvent in the operator norm from <span>\\(L_2(\\Omega)^n\\)</span> to <span>\\(H^1(\\Omega)^n\\)</span> with error of order <span>\\(\\varepsilon_ {\\vee} ^{1/2}\\)</span>. </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"30 2","pages":"270 - 274"},"PeriodicalIF":1.7000,"publicationDate":"2023-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Homogenization for Piecewise Locally Periodic Operators\",\"authors\":\"N. N. Senik\",\"doi\":\"10.1134/S1061920823020139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We discuss homogenization of a strongly elliptic operator <span>\\\\(\\\\mathcal A^\\\\varepsilon=-\\\\operatorname{div}A(x,x/\\\\varepsilon_\\\\#)\\\\nabla\\\\)</span> on a bounded <span>\\\\(C^{1,1}\\\\)</span> domain in <span>\\\\(\\\\mathbb R^d\\\\)</span> with either Dirichlet or Neumann boundary condition. The function <span>\\\\(A\\\\)</span> is piecewise Lipschitz in the first variable and periodic in the second one, and the function <span>\\\\(\\\\varepsilon_\\\\#\\\\)</span> is identically equal to <span>\\\\(\\\\varepsilon_i(\\\\varepsilon)\\\\)</span> on each piece <span>\\\\(\\\\Omega_i\\\\)</span>, with <span>\\\\(\\\\varepsilon_i(\\\\varepsilon)\\\\to0\\\\)</span> as <span>\\\\(\\\\varepsilon\\\\to0\\\\)</span>. For <span>\\\\(\\\\mu\\\\)</span> in a resolvent set, we show that the resolvent <span>\\\\((\\\\mathcal A^\\\\varepsilon-\\\\mu)^{-1}\\\\)</span> converges, as <span>\\\\(\\\\varepsilon\\\\to0\\\\)</span>, in the operator norm on <span>\\\\(L_2(\\\\Omega)^n\\\\)</span> to the resolvent <span>\\\\((\\\\mathcal A^0-\\\\mu)^{-1}\\\\)</span> of the effective operator at the rate <span>\\\\(\\\\varepsilon_ {\\\\vee} \\\\)</span>, where <span>\\\\(\\\\varepsilon_ {\\\\vee} \\\\)</span> stands for the largest of <span>\\\\(\\\\varepsilon_i(\\\\varepsilon)\\\\)</span>. We also obtain an approximation for the resolvent in the operator norm from <span>\\\\(L_2(\\\\Omega)^n\\\\)</span> to <span>\\\\(H^1(\\\\Omega)^n\\\\)</span> with error of order <span>\\\\(\\\\varepsilon_ {\\\\vee} ^{1/2}\\\\)</span>. </p>\",\"PeriodicalId\":763,\"journal\":{\"name\":\"Russian Journal of Mathematical Physics\",\"volume\":\"30 2\",\"pages\":\"270 - 274\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061920823020139\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1061920823020139","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

讨论了一类强椭圆算子的均匀化问题 \(\mathcal A^\varepsilon=-\operatorname{div}A(x,x/\varepsilon_\#)\nabla\) 在有界上 \(C^{1,1}\) 域内 \(\mathbb R^d\) 狄利克雷边界条件或诺伊曼边界条件。函数 \(A\) 第一个变量是分段利普希茨函数,第二个是周期函数 \(\varepsilon_\#\) 等于吗 \(\varepsilon_i(\varepsilon)\) 在每一块上 \(\Omega_i\), with \(\varepsilon_i(\varepsilon)\to0\) as \(\varepsilon\to0\). 因为 \(\mu\) 在解决方案集中,我们展示了解决方案 \((\mathcal A^\varepsilon-\mu)^{-1}\) 收敛,如 \(\varepsilon\to0\),在算子范数上 \(L_2(\Omega)^n\) 解决方案 \((\mathcal A^0-\mu)^{-1}\) 有效算子的速率 \(\varepsilon_ {\vee} \),其中 \(\varepsilon_ {\vee} \) 表示最大的 \(\varepsilon_i(\varepsilon)\). 我们也得到了算子范数中解的近似 \(L_2(\Omega)^n\) 到 \(H^1(\Omega)^n\) 顺序错误 \(\varepsilon_ {\vee} ^{1/2}\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Homogenization for Piecewise Locally Periodic Operators

We discuss homogenization of a strongly elliptic operator \(\mathcal A^\varepsilon=-\operatorname{div}A(x,x/\varepsilon_\#)\nabla\) on a bounded \(C^{1,1}\) domain in \(\mathbb R^d\) with either Dirichlet or Neumann boundary condition. The function \(A\) is piecewise Lipschitz in the first variable and periodic in the second one, and the function \(\varepsilon_\#\) is identically equal to \(\varepsilon_i(\varepsilon)\) on each piece \(\Omega_i\), with \(\varepsilon_i(\varepsilon)\to0\) as \(\varepsilon\to0\). For \(\mu\) in a resolvent set, we show that the resolvent \((\mathcal A^\varepsilon-\mu)^{-1}\) converges, as \(\varepsilon\to0\), in the operator norm on \(L_2(\Omega)^n\) to the resolvent \((\mathcal A^0-\mu)^{-1}\) of the effective operator at the rate \(\varepsilon_ {\vee} \), where \(\varepsilon_ {\vee} \) stands for the largest of \(\varepsilon_i(\varepsilon)\). We also obtain an approximation for the resolvent in the operator norm from \(L_2(\Omega)^n\) to \(H^1(\Omega)^n\) with error of order \(\varepsilon_ {\vee} ^{1/2}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
14.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信