热处理对CuCrFeMnNi高熵合金组织和力学性能的影响

IF 1.1 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hoseop Song, S. Song, Jaiyoung Cho, G. Song
{"title":"热处理对CuCrFeMnNi高熵合金组织和力学性能的影响","authors":"Hoseop Song, S. Song, Jaiyoung Cho, G. Song","doi":"10.3365/kjmm.2023.61.6.449","DOIUrl":null,"url":null,"abstract":"High entropy alloys (HEAs) are defined as a multi-element alloy including more than 4 elements with near equi-atomic percentage. In general, the configurational entropy of the HEAs is known to be sufficient to stabilize a single solid solution, such as body-centered cubic (BCC), face-centered cubic (FCC) and hexagonal-closed pack (HCP). Compared to BCC single-phase alloys, FCC single-phase alloys draw extensive attention because they are advantageous in manufacturing and processing. FCC-based HEAs show excellent ductility but limited strength, so many research on improving strength has been conducted. Outstanding mechanical properties with a balance of strength and ductility are rarely achieved in single-phase FCC-based HEAs. This is why most alloys for structural applications exhibit a multi-phase microstructure. In this study, we aimed to develop multi-phase FCC-based HEA with superior mechanical properties than single-phase CoCrFeMnNi HEA, via Co substitution in CoCrFeMnNi HEA by Cu, which has a high mixing enthalpy. It was found that the CuCrFeMnNi HEA is composed of two FCC phases and one BCC phase. The CuCrFeMnNi HEA was cold-rolled, and subsequently aged at 500, 700, 900oC for 1 hour. As the annealing temperature increased, the volume fraction of the FCC phase (FCC1 + FCC2) increased and the residual stress was gradually relieved by recrystallization. Furthermore, small amount of sigma phase was formed at 900oC. The effect of the microstructural evolution on the mechanical properties, such as hardness and tensile properties at room temperature, will be discussed.","PeriodicalId":17894,"journal":{"name":"Korean Journal of Metals and Materials","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Heat-Treatment on Microstructures and Mechanical Properties of CuCrFeMnNi High-Entropy Alloy\",\"authors\":\"Hoseop Song, S. Song, Jaiyoung Cho, G. Song\",\"doi\":\"10.3365/kjmm.2023.61.6.449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High entropy alloys (HEAs) are defined as a multi-element alloy including more than 4 elements with near equi-atomic percentage. In general, the configurational entropy of the HEAs is known to be sufficient to stabilize a single solid solution, such as body-centered cubic (BCC), face-centered cubic (FCC) and hexagonal-closed pack (HCP). Compared to BCC single-phase alloys, FCC single-phase alloys draw extensive attention because they are advantageous in manufacturing and processing. FCC-based HEAs show excellent ductility but limited strength, so many research on improving strength has been conducted. Outstanding mechanical properties with a balance of strength and ductility are rarely achieved in single-phase FCC-based HEAs. This is why most alloys for structural applications exhibit a multi-phase microstructure. In this study, we aimed to develop multi-phase FCC-based HEA with superior mechanical properties than single-phase CoCrFeMnNi HEA, via Co substitution in CoCrFeMnNi HEA by Cu, which has a high mixing enthalpy. It was found that the CuCrFeMnNi HEA is composed of two FCC phases and one BCC phase. The CuCrFeMnNi HEA was cold-rolled, and subsequently aged at 500, 700, 900oC for 1 hour. As the annealing temperature increased, the volume fraction of the FCC phase (FCC1 + FCC2) increased and the residual stress was gradually relieved by recrystallization. Furthermore, small amount of sigma phase was formed at 900oC. The effect of the microstructural evolution on the mechanical properties, such as hardness and tensile properties at room temperature, will be discussed.\",\"PeriodicalId\":17894,\"journal\":{\"name\":\"Korean Journal of Metals and Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal of Metals and Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3365/kjmm.2023.61.6.449\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Metals and Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3365/kjmm.2023.61.6.449","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高熵合金(High entropy alloys, HEAs)是指含有4种以上元素且原子百分数接近相等的多元素合金。一般来说,已知HEAs的构型熵足以稳定单一固溶体,如体心立方(BCC),面心立方(FCC)和六边形闭包(HCP)。与BCC单相合金相比,FCC单相合金因其在制造和加工方面的优势而受到广泛关注。基于fcc的HEAs具有良好的延性,但强度有限,因此进行了许多提高强度的研究。在单相fcc基HEAs中,很难实现强度和延性平衡的优异力学性能。这就是为什么大多数用于结构应用的合金呈现多相组织的原因。在本研究中,我们的目标是通过将CoCrFeMnNi HEA中的Co替换为具有高混合焓的Cu,开发出具有优于单相CoCrFeMnNi HEA的多相fcc基HEA。结果表明,CuCrFeMnNi HEA由两个FCC相和一个BCC相组成。CuCrFeMnNi HEA进行冷轧,随后分别在500,700,900℃下时效1小时。随着退火温度的升高,FCC相(FCC1 + FCC2)的体积分数增大,残余应力通过再结晶逐渐消除。在900℃时形成少量sigma相。讨论了组织演变对室温下硬度和拉伸性能等力学性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of Heat-Treatment on Microstructures and Mechanical Properties of CuCrFeMnNi High-Entropy Alloy
High entropy alloys (HEAs) are defined as a multi-element alloy including more than 4 elements with near equi-atomic percentage. In general, the configurational entropy of the HEAs is known to be sufficient to stabilize a single solid solution, such as body-centered cubic (BCC), face-centered cubic (FCC) and hexagonal-closed pack (HCP). Compared to BCC single-phase alloys, FCC single-phase alloys draw extensive attention because they are advantageous in manufacturing and processing. FCC-based HEAs show excellent ductility but limited strength, so many research on improving strength has been conducted. Outstanding mechanical properties with a balance of strength and ductility are rarely achieved in single-phase FCC-based HEAs. This is why most alloys for structural applications exhibit a multi-phase microstructure. In this study, we aimed to develop multi-phase FCC-based HEA with superior mechanical properties than single-phase CoCrFeMnNi HEA, via Co substitution in CoCrFeMnNi HEA by Cu, which has a high mixing enthalpy. It was found that the CuCrFeMnNi HEA is composed of two FCC phases and one BCC phase. The CuCrFeMnNi HEA was cold-rolled, and subsequently aged at 500, 700, 900oC for 1 hour. As the annealing temperature increased, the volume fraction of the FCC phase (FCC1 + FCC2) increased and the residual stress was gradually relieved by recrystallization. Furthermore, small amount of sigma phase was formed at 900oC. The effect of the microstructural evolution on the mechanical properties, such as hardness and tensile properties at room temperature, will be discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Korean Journal of Metals and Materials
Korean Journal of Metals and Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-METALLURGY & METALLURGICAL ENGINEERING
CiteScore
1.80
自引率
58.30%
发文量
100
审稿时长
4-8 weeks
期刊介绍: The Korean Journal of Metals and Materials is a representative Korean-language journal of the Korean Institute of Metals and Materials (KIM); it publishes domestic and foreign academic papers related to metals and materials, in abroad range of fields from metals and materials to nano-materials, biomaterials, functional materials, energy materials, and new materials, and its official ISO designation is Korean J. Met. Mater.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信