最大度图$k+1的$k$-转换数的一个下界$

IF 0.6 Q3 MATHEMATICS
C. Mynhardt, Jane L. Wodlinger
{"title":"最大度图$k+1的$k$-转换数的一个下界$","authors":"C. Mynhardt, Jane L. Wodlinger","doi":"10.22108/TOC.2019.112258.1579","DOIUrl":null,"url":null,"abstract":"‎‎We derive a new sharp lower bound on the $k$-conversion number of graphs of maximum degree $k+1$‎. ‎This generalizes a result of W.~Staton [Induced forests in cubic graphs‎, ‎Discrete Math.‎,49 (‎1984) ‎175--178‎]‎, ‎which established a lower bound on the $k$-conversion number of $(k+1)$-regular graphs‎.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":" ","pages":"1-12"},"PeriodicalIF":0.6000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A lower bound on the $k$-conversion number of graphs of maximum degree $k+1$\",\"authors\":\"C. Mynhardt, Jane L. Wodlinger\",\"doi\":\"10.22108/TOC.2019.112258.1579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"‎‎We derive a new sharp lower bound on the $k$-conversion number of graphs of maximum degree $k+1$‎. ‎This generalizes a result of W.~Staton [Induced forests in cubic graphs‎, ‎Discrete Math.‎,49 (‎1984) ‎175--178‎]‎, ‎which established a lower bound on the $k$-conversion number of $(k+1)$-regular graphs‎.\",\"PeriodicalId\":43837,\"journal\":{\"name\":\"Transactions on Combinatorics\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/TOC.2019.112258.1579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2019.112258.1579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

‎‎我们导出了最大度图$k+1的$k$-转换数的一个新的尖锐下界$‎. ‎这推广了W.~Staton[三次图中的诱导森林]的一个结果‎, ‎离散数学。‎,49(‎1984)‎175-178‎]‎, ‎它建立了$(k+1)$正则图的$k+转换数的下界‎.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A lower bound on the $k$-conversion number of graphs of maximum degree $k+1$
‎‎We derive a new sharp lower bound on the $k$-conversion number of graphs of maximum degree $k+1$‎. ‎This generalizes a result of W.~Staton [Induced forests in cubic graphs‎, ‎Discrete Math.‎,49 (‎1984) ‎175--178‎]‎, ‎which established a lower bound on the $k$-conversion number of $(k+1)$-regular graphs‎.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信