具有积分边界条件的系统的最优控制问题

IF 0.7 Q2 MATHEMATICS
M. Mardanov, Y. Sharifov
{"title":"具有积分边界条件的系统的最优控制问题","authors":"M. Mardanov, Y. Sharifov","doi":"10.31489/2023m1/110-123","DOIUrl":null,"url":null,"abstract":"In this paper, we consider an optimal control problem with a «pure», integral boundary condition. The Green’s function is constructed. Using contracting Banach mappings, a sufficient condition for the existence and uniqueness of a solution to one class of integral boundary value problems for fixed admissible controls is established. Using the functional increment method, the Pontryagin‘s maximum principle is proved. The first and second variations of the functional are calculated. Further, various necessary conditions for optimality of the second order are obtained by using variations of controls.","PeriodicalId":29915,"journal":{"name":"Bulletin of the Karaganda University-Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An optimal control problem for the systems with integral boundary conditions\",\"authors\":\"M. Mardanov, Y. Sharifov\",\"doi\":\"10.31489/2023m1/110-123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider an optimal control problem with a «pure», integral boundary condition. The Green’s function is constructed. Using contracting Banach mappings, a sufficient condition for the existence and uniqueness of a solution to one class of integral boundary value problems for fixed admissible controls is established. Using the functional increment method, the Pontryagin‘s maximum principle is proved. The first and second variations of the functional are calculated. Further, various necessary conditions for optimality of the second order are obtained by using variations of controls.\",\"PeriodicalId\":29915,\"journal\":{\"name\":\"Bulletin of the Karaganda University-Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Karaganda University-Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31489/2023m1/110-123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Karaganda University-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2023m1/110-123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑一个具有“纯”积分边界条件的最优控制问题。构造了格林函数。利用压缩Banach映射,建立了一类固定可容许控制的积分边值问题解存在唯一的充分条件。利用函数增量法,证明了Pontryagin的极大值原理。计算函数的第一和第二变化。此外,通过使用控制的变化来获得二阶最优性的各种必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An optimal control problem for the systems with integral boundary conditions
In this paper, we consider an optimal control problem with a «pure», integral boundary condition. The Green’s function is constructed. Using contracting Banach mappings, a sufficient condition for the existence and uniqueness of a solution to one class of integral boundary value problems for fixed admissible controls is established. Using the functional increment method, the Pontryagin‘s maximum principle is proved. The first and second variations of the functional are calculated. Further, various necessary conditions for optimality of the second order are obtained by using variations of controls.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
50.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信