固态钠电池用新型固体聚合物电解质(PEG + CH3COONa)的合成与表征

Pub Date : 2022-04-01 DOI:10.15251/jobm.2022.142.63
A. Polu, V. Mekala, T. Ramesh
{"title":"固态钠电池用新型固体聚合物电解质(PEG + CH3COONa)的合成与表征","authors":"A. Polu, V. Mekala, T. Ramesh","doi":"10.15251/jobm.2022.142.63","DOIUrl":null,"url":null,"abstract":"Using the solution-cast approach, new solid polymer electrolyte films containing sodium acetate (CH3COONa) in poly (ethylene glycol) were prepared. These polymer electrolyte systems have been characterized using a variety of experimental approaches, including temperature-dependent conductivity and DSC. The endothermic peak at 59.42°C, which corresponds to the melting temperature of pure PEG, is revealed by DSC measurements. Due to the addition of salt to the polymer, a minor movement in the melting point, Tm, towards lower temperatures has been detected. At 30°C, the 80PEG+20CH3COONa electrolyte system had a maximum conductivity of 7.9 × 10-6 S/cm. When compared to pure PEG, the conductivity enhanced by two orders of magnitude. The magnitude of conductivity increased as the temperature raised.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Synthesis and characterization of new solid polymer electrolyte (PEG + CH3COONa) for solid-state sodium batteries\",\"authors\":\"A. Polu, V. Mekala, T. Ramesh\",\"doi\":\"10.15251/jobm.2022.142.63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the solution-cast approach, new solid polymer electrolyte films containing sodium acetate (CH3COONa) in poly (ethylene glycol) were prepared. These polymer electrolyte systems have been characterized using a variety of experimental approaches, including temperature-dependent conductivity and DSC. The endothermic peak at 59.42°C, which corresponds to the melting temperature of pure PEG, is revealed by DSC measurements. Due to the addition of salt to the polymer, a minor movement in the melting point, Tm, towards lower temperatures has been detected. At 30°C, the 80PEG+20CH3COONa electrolyte system had a maximum conductivity of 7.9 × 10-6 S/cm. When compared to pure PEG, the conductivity enhanced by two orders of magnitude. The magnitude of conductivity increased as the temperature raised.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15251/jobm.2022.142.63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15251/jobm.2022.142.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

采用溶液浇铸法,制备了含有醋酸钠(CH3COONa)和聚乙二醇的新型固体聚合物电解质膜。这些聚合物电解质系统已经使用各种实验方法进行了表征,包括温度相关的电导率和DSC。DSC测量显示,59.42°C处的吸热峰对应于纯PEG的熔融温度。由于向聚合物中添加了盐,已经检测到熔点Tm向较低温度的微小移动。在30°C下,80PEG+20CH3COONa电解质体系的最大电导率为7.9×10-6S/cm。与纯PEG相比,电导率提高了两个数量级。电导率的大小随着温度的升高而增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Synthesis and characterization of new solid polymer electrolyte (PEG + CH3COONa) for solid-state sodium batteries
Using the solution-cast approach, new solid polymer electrolyte films containing sodium acetate (CH3COONa) in poly (ethylene glycol) were prepared. These polymer electrolyte systems have been characterized using a variety of experimental approaches, including temperature-dependent conductivity and DSC. The endothermic peak at 59.42°C, which corresponds to the melting temperature of pure PEG, is revealed by DSC measurements. Due to the addition of salt to the polymer, a minor movement in the melting point, Tm, towards lower temperatures has been detected. At 30°C, the 80PEG+20CH3COONa electrolyte system had a maximum conductivity of 7.9 × 10-6 S/cm. When compared to pure PEG, the conductivity enhanced by two orders of magnitude. The magnitude of conductivity increased as the temperature raised.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信