通过重叠数据传输和内核执行增强CUDA应用程序的性能

Q3 Economics, Econometrics and Finance
K. Raju, Niranjan N Chiplunkar
{"title":"通过重叠数据传输和内核执行增强CUDA应用程序的性能","authors":"K. Raju, Niranjan N Chiplunkar","doi":"10.35784/acs-2021-17","DOIUrl":null,"url":null,"abstract":"The CPU-GPU combination is a widely used heterogeneous computing system in which the CPU and GPU have different address spaces. Since the GPU cannot directly access the CPU memory, prior to invoking the GPU function the input data must be available on the GPU memory. On completion of GPU function, the results of computation are transferred to CPU memory. The CPU-GPU data transfer happens through PCI-Express bus. The PCI-E bandwidth is much lesser than that of GPU memory. The speed at which the data is transferred is limited by the PCI-E bandwidth. Hence, the PCI-E acts as a performance bottleneck. In this paper two approaches are discussed to minimize the overhead of data transfer, namely, performing the data transfer while the GPU function is being executed and reducing the amount of data to be transferred to GPU.  The effectiveness of these approaches on the execution time of a set of CUDA applications is realized using CUDA streams. The results of our experiments show that the execution time of applications can be minimized with the proposed approaches.","PeriodicalId":36379,"journal":{"name":"Applied Computer Science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"PERFORMANCE ENHANCEMENT OF CUDA APPLICATIONS BY OVERLAPPING DATA TRANSFER AND KERNEL EXECUTION\",\"authors\":\"K. Raju, Niranjan N Chiplunkar\",\"doi\":\"10.35784/acs-2021-17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The CPU-GPU combination is a widely used heterogeneous computing system in which the CPU and GPU have different address spaces. Since the GPU cannot directly access the CPU memory, prior to invoking the GPU function the input data must be available on the GPU memory. On completion of GPU function, the results of computation are transferred to CPU memory. The CPU-GPU data transfer happens through PCI-Express bus. The PCI-E bandwidth is much lesser than that of GPU memory. The speed at which the data is transferred is limited by the PCI-E bandwidth. Hence, the PCI-E acts as a performance bottleneck. In this paper two approaches are discussed to minimize the overhead of data transfer, namely, performing the data transfer while the GPU function is being executed and reducing the amount of data to be transferred to GPU.  The effectiveness of these approaches on the execution time of a set of CUDA applications is realized using CUDA streams. The results of our experiments show that the execution time of applications can be minimized with the proposed approaches.\",\"PeriodicalId\":36379,\"journal\":{\"name\":\"Applied Computer Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35784/acs-2021-17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35784/acs-2021-17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 1

摘要

CPU-GPU组合是一种广泛使用的异构计算系统,其中CPU和GPU具有不同的地址空间。由于GPU不能直接访问CPU存储器,因此在调用GPU功能之前,输入数据必须在GPU存储器上可用。GPU功能完成后,计算结果被传输到CPU存储器。CPU-GPU数据传输通过PCI Express总线进行。PCI-E的带宽远小于GPU内存的带宽。数据传输的速度受到PCI-E带宽的限制。因此,PCI-E成为性能瓶颈。在本文中,讨论了两种方法来最小化数据传输的开销,即在执行GPU功能时执行数据传输和减少要传输到GPU的数据量。这些方法对一组CUDA应用程序的执行时间的有效性是使用CUDA流来实现的。我们的实验结果表明,使用所提出的方法可以最小化应用程序的执行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PERFORMANCE ENHANCEMENT OF CUDA APPLICATIONS BY OVERLAPPING DATA TRANSFER AND KERNEL EXECUTION
The CPU-GPU combination is a widely used heterogeneous computing system in which the CPU and GPU have different address spaces. Since the GPU cannot directly access the CPU memory, prior to invoking the GPU function the input data must be available on the GPU memory. On completion of GPU function, the results of computation are transferred to CPU memory. The CPU-GPU data transfer happens through PCI-Express bus. The PCI-E bandwidth is much lesser than that of GPU memory. The speed at which the data is transferred is limited by the PCI-E bandwidth. Hence, the PCI-E acts as a performance bottleneck. In this paper two approaches are discussed to minimize the overhead of data transfer, namely, performing the data transfer while the GPU function is being executed and reducing the amount of data to be transferred to GPU.  The effectiveness of these approaches on the execution time of a set of CUDA applications is realized using CUDA streams. The results of our experiments show that the execution time of applications can be minimized with the proposed approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computer Science
Applied Computer Science Engineering-Industrial and Manufacturing Engineering
CiteScore
1.50
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信