MFS-LDA:冷启动问题的多特征空间标签推荐模型

Q Social Sciences
Muhammad Ali Masood, R. Abbasi, O. Maqbool, M. Mushtaq, Naif R. Aljohani, Ali Daud, M. Aslam, Jalal S. Alowibdi
{"title":"MFS-LDA:冷启动问题的多特征空间标签推荐模型","authors":"Muhammad Ali Masood, R. Abbasi, O. Maqbool, M. Mushtaq, Naif R. Aljohani, Ali Daud, M. Aslam, Jalal S. Alowibdi","doi":"10.1108/PROG-01-2017-0002","DOIUrl":null,"url":null,"abstract":"Tags are used to annotate resources on social media platforms. Most tag recommendation methods use popular tags, but in the case of new resources that are as yet untagged (the cold start problem), popularity-based tag recommendation methods fail to work. The purpose of this paper is to propose a novel model for tag recommendation called multi-feature space latent Dirichlet allocation (MFS-LDA) for cold start problem.,MFS-LDA is a novel latent Dirichlet allocation (LDA)-based model which exploits multiple feature spaces (title, contents, and tags) for recommending tags. Exploiting multiple feature spaces allows MFS-LDA to recommend tags even if data from a feature space is missing (the cold start problem).,Evaluation of a publicly available data set consisting of around 20,000 Wikipedia articles that are tagged on a social bookmarking website shows a significant improvement over existing LDA-based tag recommendation methods.,The originality of MFS-LDA lies in segregation of features for removing bias toward dominant features and in synchronization of multiple feature space for tag recommendation.","PeriodicalId":49663,"journal":{"name":"Program-Electronic Library and Information Systems","volume":"51 1","pages":"218-234"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1108/PROG-01-2017-0002","citationCount":"6","resultStr":"{\"title\":\"MFS-LDA: a multi-feature space tag recommendation model for cold start problem\",\"authors\":\"Muhammad Ali Masood, R. Abbasi, O. Maqbool, M. Mushtaq, Naif R. Aljohani, Ali Daud, M. Aslam, Jalal S. Alowibdi\",\"doi\":\"10.1108/PROG-01-2017-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tags are used to annotate resources on social media platforms. Most tag recommendation methods use popular tags, but in the case of new resources that are as yet untagged (the cold start problem), popularity-based tag recommendation methods fail to work. The purpose of this paper is to propose a novel model for tag recommendation called multi-feature space latent Dirichlet allocation (MFS-LDA) for cold start problem.,MFS-LDA is a novel latent Dirichlet allocation (LDA)-based model which exploits multiple feature spaces (title, contents, and tags) for recommending tags. Exploiting multiple feature spaces allows MFS-LDA to recommend tags even if data from a feature space is missing (the cold start problem).,Evaluation of a publicly available data set consisting of around 20,000 Wikipedia articles that are tagged on a social bookmarking website shows a significant improvement over existing LDA-based tag recommendation methods.,The originality of MFS-LDA lies in segregation of features for removing bias toward dominant features and in synchronization of multiple feature space for tag recommendation.\",\"PeriodicalId\":49663,\"journal\":{\"name\":\"Program-Electronic Library and Information Systems\",\"volume\":\"51 1\",\"pages\":\"218-234\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1108/PROG-01-2017-0002\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Program-Electronic Library and Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/PROG-01-2017-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Program-Electronic Library and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/PROG-01-2017-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 6

摘要

标签用于注释社交媒体平台上的资源。大多数标签推荐方法使用流行标签,但在新资源尚未标记的情况下(冷启动问题),基于流行度的标签推荐方法无法工作。本文的目的是为冷启动问题提出一种新的标签推荐模型,称为多特征空间潜在狄利克雷分配(MFS-LDA)。,MFS-LDA是一种新的基于潜在狄利克雷分配(LDA)的模型,它利用多个特征空间(标题、内容和标签)来推荐标签。利用多个特征空间允许MFS-LDA推荐标签,即使来自特征空间的数据丢失(冷启动问题)。,对一个由大约20000篇维基百科文章组成的公开可用数据集的评估显示,与现有的基于LDA的标签推荐方法相比,该数据集有了显著的改进。,MFS-LDA的独创性在于分离特征以消除对主要特征的偏见,以及同步多个特征空间以进行标签推荐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MFS-LDA: a multi-feature space tag recommendation model for cold start problem
Tags are used to annotate resources on social media platforms. Most tag recommendation methods use popular tags, but in the case of new resources that are as yet untagged (the cold start problem), popularity-based tag recommendation methods fail to work. The purpose of this paper is to propose a novel model for tag recommendation called multi-feature space latent Dirichlet allocation (MFS-LDA) for cold start problem.,MFS-LDA is a novel latent Dirichlet allocation (LDA)-based model which exploits multiple feature spaces (title, contents, and tags) for recommending tags. Exploiting multiple feature spaces allows MFS-LDA to recommend tags even if data from a feature space is missing (the cold start problem).,Evaluation of a publicly available data set consisting of around 20,000 Wikipedia articles that are tagged on a social bookmarking website shows a significant improvement over existing LDA-based tag recommendation methods.,The originality of MFS-LDA lies in segregation of features for removing bias toward dominant features and in synchronization of multiple feature space for tag recommendation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Program-Electronic Library and Information Systems
Program-Electronic Library and Information Systems 工程技术-计算机:信息系统
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: ■Automation of library and information services ■Storage and retrieval of all forms of electronic information ■Delivery of information to end users ■Database design and management ■Techniques for storing and distributing information ■Networking and communications technology ■The Internet ■User interface design ■Procurement of systems ■User training and support ■System evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信