{"title":"紧集上$m$-次调和函数的Dirichlet问题","authors":"P. Åhag, R. Czyż, Lisa Hed","doi":"10.7146/math.scand.a-119708","DOIUrl":null,"url":null,"abstract":"We characterize those compact sets for which the Dirichlet problem has a solution within the class of continuous $m$-subharmonic functions defined on a compact set, and then within the class of $m$-harmonic functions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Dirichlet problem for $m$-subharmonic functions on compact sets\",\"authors\":\"P. Åhag, R. Czyż, Lisa Hed\",\"doi\":\"10.7146/math.scand.a-119708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We characterize those compact sets for which the Dirichlet problem has a solution within the class of continuous $m$-subharmonic functions defined on a compact set, and then within the class of $m$-harmonic functions.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7146/math.scand.a-119708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-119708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Dirichlet problem for $m$-subharmonic functions on compact sets
We characterize those compact sets for which the Dirichlet problem has a solution within the class of continuous $m$-subharmonic functions defined on a compact set, and then within the class of $m$-harmonic functions.