复合Poisson模型中期望折扣罚函数的非参数估计

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Florian Dussap
{"title":"复合Poisson模型中期望折扣罚函数的非参数估计","authors":"Florian Dussap","doi":"10.1214/22-ejs2003","DOIUrl":null,"url":null,"abstract":": We propose a nonparametric estimator of the expected dis- counted penalty function in the compound Poisson risk model. We use a projection estimator on the Laguerre basis and we compute the co- efficients using Plancherel theorem. We provide an upper bound on the MISE of our estimator, and we show it achieves parametric rates of conver- gence on Sobolev–Laguerre spaces without needing a bias-variance compromise. Moreover, we compare our estimator with the Laguerre deconvolution method. We compute an upper bound of the MISE of the Laguerre deconvolution estimator and we compare it on Sobolev–Laguerre spaces with our estimator. Finally, we compare these estimators on simulated data.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Nonparametric estimation of the expected discounted penalty function in the compound Poisson model\",\"authors\":\"Florian Dussap\",\"doi\":\"10.1214/22-ejs2003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": We propose a nonparametric estimator of the expected dis- counted penalty function in the compound Poisson risk model. We use a projection estimator on the Laguerre basis and we compute the co- efficients using Plancherel theorem. We provide an upper bound on the MISE of our estimator, and we show it achieves parametric rates of conver- gence on Sobolev–Laguerre spaces without needing a bias-variance compromise. Moreover, we compare our estimator with the Laguerre deconvolution method. We compute an upper bound of the MISE of the Laguerre deconvolution estimator and we compare it on Sobolev–Laguerre spaces with our estimator. Finally, we compare these estimators on simulated data.\",\"PeriodicalId\":49272,\"journal\":{\"name\":\"Electronic Journal of Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-ejs2003\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ejs2003","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

:在复合泊松风险模型中,我们提出了期望不计数惩罚函数的非参数估计。我们使用拉盖尔基上的投影估计器,并使用Plancherel定理计算系数。我们提供了我们的估计器的MISE的上界,并证明了它在Sobolev–Laguerre空间上实现了参数收敛率,而不需要偏差-方差折衷。此外,我们还将我们的估计量与拉盖尔反褶积方法进行了比较。我们计算了Laguerre反卷积估计器的MISE的上界,并将其在Sobolev–Laguerre空间上与我们的估计器进行了比较。最后,我们在模拟数据上比较了这些估计量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonparametric estimation of the expected discounted penalty function in the compound Poisson model
: We propose a nonparametric estimator of the expected dis- counted penalty function in the compound Poisson risk model. We use a projection estimator on the Laguerre basis and we compute the co- efficients using Plancherel theorem. We provide an upper bound on the MISE of our estimator, and we show it achieves parametric rates of conver- gence on Sobolev–Laguerre spaces without needing a bias-variance compromise. Moreover, we compare our estimator with the Laguerre deconvolution method. We compute an upper bound of the MISE of the Laguerre deconvolution estimator and we compare it on Sobolev–Laguerre spaces with our estimator. Finally, we compare these estimators on simulated data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Statistics
Electronic Journal of Statistics STATISTICS & PROBABILITY-
CiteScore
1.80
自引率
9.10%
发文量
100
审稿时长
3 months
期刊介绍: The Electronic Journal of Statistics (EJS) publishes research articles and short notes on theoretical, computational and applied statistics. The journal is open access. Articles are refereed and are held to the same standard as articles in other IMS journals. Articles become publicly available shortly after they are accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信