Manoj Kumar, R. Ranjan, Amar Kumar, M. Sinha, Rohit Srivastava, S. Subarna, Samir Kumar Mandal
{"title":"石榴叶水提取物合成银纳米粒子对大鼠肝毒性的保护作用","authors":"Manoj Kumar, R. Ranjan, Amar Kumar, M. Sinha, Rohit Srivastava, S. Subarna, Samir Kumar Mandal","doi":"10.52547/nbr.7.4.381","DOIUrl":null,"url":null,"abstract":"Punica granatum leaf extracts have been used since time immemorial in traditional medicines. It is used for its antioxidant properties. Green nanoparticle synthesis is an emerging field which has opened an entirely different scope for medicinal formulations. It has been reported by many users that the green nanoparticles are more effective medicines as compared with their simple extracts. Thus, in order to evaluate these speculations, the present work was undertaken to assess the hepatoprotective activity of silver nanoparticles synthesized using aqueous leaf extract of Punica granatum in comparison with the aqueous extract. After CCl4 intoxication the serum bilirubin total increased significantly (p<0.05) and the total protein level decreased significantly (p<0.05) as compared with the control group; in addition, alkaline phosphatase activity, aspartate aminotransferase activity and alanine transaminase activity increased significantly (p<0.05). The CCl4 intoxicated rats were treated with aqueous leaf extract and synthesized nanoparticles, the results clearly revealed that the aqueous extract of Punica granatum showed hepatoprotective effect, as the liver profile altered by CCl4 toxicity, recovered to normal control values. Moreover, the nanoparticles synthesized using aqueous leaf extract of Punica granatum were comparatively more effective as hepatoprotective agent than the aqueous extract of Punica granatum.","PeriodicalId":52900,"journal":{"name":"yfthhy nwyn dr `lwm zysty","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Hepatoprotective activity of Silver Nanoparticles synthesized using aqueous leaf extract of Punica granatum against induced hepatotoxicity in rats\",\"authors\":\"Manoj Kumar, R. Ranjan, Amar Kumar, M. Sinha, Rohit Srivastava, S. Subarna, Samir Kumar Mandal\",\"doi\":\"10.52547/nbr.7.4.381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Punica granatum leaf extracts have been used since time immemorial in traditional medicines. It is used for its antioxidant properties. Green nanoparticle synthesis is an emerging field which has opened an entirely different scope for medicinal formulations. It has been reported by many users that the green nanoparticles are more effective medicines as compared with their simple extracts. Thus, in order to evaluate these speculations, the present work was undertaken to assess the hepatoprotective activity of silver nanoparticles synthesized using aqueous leaf extract of Punica granatum in comparison with the aqueous extract. After CCl4 intoxication the serum bilirubin total increased significantly (p<0.05) and the total protein level decreased significantly (p<0.05) as compared with the control group; in addition, alkaline phosphatase activity, aspartate aminotransferase activity and alanine transaminase activity increased significantly (p<0.05). The CCl4 intoxicated rats were treated with aqueous leaf extract and synthesized nanoparticles, the results clearly revealed that the aqueous extract of Punica granatum showed hepatoprotective effect, as the liver profile altered by CCl4 toxicity, recovered to normal control values. Moreover, the nanoparticles synthesized using aqueous leaf extract of Punica granatum were comparatively more effective as hepatoprotective agent than the aqueous extract of Punica granatum.\",\"PeriodicalId\":52900,\"journal\":{\"name\":\"yfthhy nwyn dr `lwm zysty\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"yfthhy nwyn dr `lwm zysty\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52547/nbr.7.4.381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"yfthhy nwyn dr `lwm zysty","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/nbr.7.4.381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hepatoprotective activity of Silver Nanoparticles synthesized using aqueous leaf extract of Punica granatum against induced hepatotoxicity in rats
Punica granatum leaf extracts have been used since time immemorial in traditional medicines. It is used for its antioxidant properties. Green nanoparticle synthesis is an emerging field which has opened an entirely different scope for medicinal formulations. It has been reported by many users that the green nanoparticles are more effective medicines as compared with their simple extracts. Thus, in order to evaluate these speculations, the present work was undertaken to assess the hepatoprotective activity of silver nanoparticles synthesized using aqueous leaf extract of Punica granatum in comparison with the aqueous extract. After CCl4 intoxication the serum bilirubin total increased significantly (p<0.05) and the total protein level decreased significantly (p<0.05) as compared with the control group; in addition, alkaline phosphatase activity, aspartate aminotransferase activity and alanine transaminase activity increased significantly (p<0.05). The CCl4 intoxicated rats were treated with aqueous leaf extract and synthesized nanoparticles, the results clearly revealed that the aqueous extract of Punica granatum showed hepatoprotective effect, as the liver profile altered by CCl4 toxicity, recovered to normal control values. Moreover, the nanoparticles synthesized using aqueous leaf extract of Punica granatum were comparatively more effective as hepatoprotective agent than the aqueous extract of Punica granatum.