伪黎曼空间形式中关于各向同性子流形的不等式

IF 0.4 Q4 MATHEMATICS
Alexandru Ciobanu
{"title":"伪黎曼空间形式中关于各向同性子流形的不等式","authors":"Alexandru Ciobanu","doi":"10.36890/iejg.1260464","DOIUrl":null,"url":null,"abstract":"Spacelike and timelike isotropic submanifolds of pseudo-Riemannian spaces have interesting properties, with important applications in Mathematics and Physics. The article presents inequalities for isotropic spacelike and timelike submanifolds of pseudo-Riemannian space forms and isotropic Lorentzian submanifolds are also considered.","PeriodicalId":43768,"journal":{"name":"International Electronic Journal of Geometry","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inequalities on Isotropic Submanifolds in Pseudo-Riemannian Space Forms\",\"authors\":\"Alexandru Ciobanu\",\"doi\":\"10.36890/iejg.1260464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spacelike and timelike isotropic submanifolds of pseudo-Riemannian spaces have interesting properties, with important applications in Mathematics and Physics. The article presents inequalities for isotropic spacelike and timelike submanifolds of pseudo-Riemannian space forms and isotropic Lorentzian submanifolds are also considered.\",\"PeriodicalId\":43768,\"journal\":{\"name\":\"International Electronic Journal of Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36890/iejg.1260464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36890/iejg.1260464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

伪黎曼空间的类时空各向同性子流形具有有趣的性质,在数学和物理中有着重要的应用。本文给出了伪黎曼空间形式的各向同性类时空子流形的不等式,并考虑了各向同性洛伦兹子流形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inequalities on Isotropic Submanifolds in Pseudo-Riemannian Space Forms
Spacelike and timelike isotropic submanifolds of pseudo-Riemannian spaces have interesting properties, with important applications in Mathematics and Physics. The article presents inequalities for isotropic spacelike and timelike submanifolds of pseudo-Riemannian space forms and isotropic Lorentzian submanifolds are also considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
14.30%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信