随机二部图的谱和局部化性质

Q1 Mathematics
C.T. Martínez-Martínez , J.A. Méndez-Bermúdez , Yamir Moreno , Jair J. Pineda-Pineda , José M. Sigarreta
{"title":"随机二部图的谱和局部化性质","authors":"C.T. Martínez-Martínez ,&nbsp;J.A. Méndez-Bermúdez ,&nbsp;Yamir Moreno ,&nbsp;Jair J. Pineda-Pineda ,&nbsp;José M. Sigarreta","doi":"10.1016/j.csfx.2020.100021","DOIUrl":null,"url":null,"abstract":"<div><p>Bipartite graphs are often found to represent the connectivity between the components of many systems such as ecosystems. A bipartite graph is a set of <em>n</em> nodes that is decomposed into two disjoint subsets, having <em>m</em> and <span><math><mrow><mi>n</mi><mo>−</mo><mi>m</mi></mrow></math></span> vertices each, such that there are no adjacent vertices within the same set. The connectivity between both sets, which is the relevant quantity in terms of connections, can be quantified by a parameter <em>α</em> ∈ [0, 1] that equals the ratio of existent adjacent pairs over the total number of possible adjacent pairs. Here, we study the spectral and localization properties of such random bipartite graphs. Specifically, within a Random Matrix Theory (RMT) approach, we identify a scaling parameter <em>ξ</em> ≡ <em>ξ</em>(<em>n, m, α</em>) that fixes the localization properties of the eigenvectors of the adjacency matrices of random bipartite graphs. We also show that, when <em>ξ</em> &lt; 1/10 (<em>ξ</em> &gt; 10) the eigenvectors are localized (extended), whereas the localization–to–delocalization transition occurs in the interval 1/10 &lt; <em>ξ</em> &lt; 10. Finally, given the potential applications of our findings, we round off the study by demonstrating that for fixed <em>ξ</em>, the spectral properties of our graph model are also universal.</p></div>","PeriodicalId":37147,"journal":{"name":"Chaos, Solitons and Fractals: X","volume":"3 ","pages":"Article 100021"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.csfx.2020.100021","citationCount":"11","resultStr":"{\"title\":\"Spectral and localization properties of random bipartite graphs\",\"authors\":\"C.T. Martínez-Martínez ,&nbsp;J.A. Méndez-Bermúdez ,&nbsp;Yamir Moreno ,&nbsp;Jair J. Pineda-Pineda ,&nbsp;José M. Sigarreta\",\"doi\":\"10.1016/j.csfx.2020.100021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bipartite graphs are often found to represent the connectivity between the components of many systems such as ecosystems. A bipartite graph is a set of <em>n</em> nodes that is decomposed into two disjoint subsets, having <em>m</em> and <span><math><mrow><mi>n</mi><mo>−</mo><mi>m</mi></mrow></math></span> vertices each, such that there are no adjacent vertices within the same set. The connectivity between both sets, which is the relevant quantity in terms of connections, can be quantified by a parameter <em>α</em> ∈ [0, 1] that equals the ratio of existent adjacent pairs over the total number of possible adjacent pairs. Here, we study the spectral and localization properties of such random bipartite graphs. Specifically, within a Random Matrix Theory (RMT) approach, we identify a scaling parameter <em>ξ</em> ≡ <em>ξ</em>(<em>n, m, α</em>) that fixes the localization properties of the eigenvectors of the adjacency matrices of random bipartite graphs. We also show that, when <em>ξ</em> &lt; 1/10 (<em>ξ</em> &gt; 10) the eigenvectors are localized (extended), whereas the localization–to–delocalization transition occurs in the interval 1/10 &lt; <em>ξ</em> &lt; 10. Finally, given the potential applications of our findings, we round off the study by demonstrating that for fixed <em>ξ</em>, the spectral properties of our graph model are also universal.</p></div>\",\"PeriodicalId\":37147,\"journal\":{\"name\":\"Chaos, Solitons and Fractals: X\",\"volume\":\"3 \",\"pages\":\"Article 100021\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.csfx.2020.100021\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos, Solitons and Fractals: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590054420300026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos, Solitons and Fractals: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590054420300026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 11

摘要

二部图经常被用来表示许多系统(如生态系统)组成部分之间的连通性。二部图是一个n个节点的集合,它被分解成两个不相交的子集,每个子集有m和n - m个顶点,因此在同一集合内没有相邻的顶点。两个集合之间的连通性是连接的相关量,可以用参数α ∈ [0,1]来量化,该参数等于存在的相邻对与可能的相邻对的总数之比。本文研究了这类随机二部图的谱性和局域性。具体来说,在随机矩阵理论(RMT)方法中,我们确定了一个缩放参数ξ ≡ ξ(n, m, α),该参数固定了随机二部图邻接矩阵的特征向量的定位属性。我们还表明,当ξ < 1/10 (ξ > 10)时,特征向量是局部化的(扩展的),而在1/10区间( < ξ < 10)发生从局部化到非局部化的过渡。最后,考虑到我们的发现的潜在应用,我们通过证明对于固定ξ,我们的图模型的谱性质也是普遍的来完成研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral and localization properties of random bipartite graphs

Bipartite graphs are often found to represent the connectivity between the components of many systems such as ecosystems. A bipartite graph is a set of n nodes that is decomposed into two disjoint subsets, having m and nm vertices each, such that there are no adjacent vertices within the same set. The connectivity between both sets, which is the relevant quantity in terms of connections, can be quantified by a parameter α ∈ [0, 1] that equals the ratio of existent adjacent pairs over the total number of possible adjacent pairs. Here, we study the spectral and localization properties of such random bipartite graphs. Specifically, within a Random Matrix Theory (RMT) approach, we identify a scaling parameter ξ ≡ ξ(n, m, α) that fixes the localization properties of the eigenvectors of the adjacency matrices of random bipartite graphs. We also show that, when ξ < 1/10 (ξ > 10) the eigenvectors are localized (extended), whereas the localization–to–delocalization transition occurs in the interval 1/10 < ξ < 10. Finally, given the potential applications of our findings, we round off the study by demonstrating that for fixed ξ, the spectral properties of our graph model are also universal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos, Solitons and Fractals: X
Chaos, Solitons and Fractals: X Mathematics-Mathematics (all)
CiteScore
5.00
自引率
0.00%
发文量
15
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信