{"title":"用机器学习预测阅读障碍:特征选择、算法和评估指标的综合综述","authors":"Velmurugan S","doi":"10.35566/jbds/v3n1/s","DOIUrl":null,"url":null,"abstract":"This literature review explores the use of machine learning-based approaches for the diagnosis and treatment of dyslexia, a learning disorder that affects reading and spelling skills. Various machine learning models, such as artificial neural networks (ANNs), support vector machines (SVMs), and decision trees, have been used to classify individuals as either dyslexic or non-dyslexic based on functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) data. These models have shown promising results for early detection and personalized treatment plans. However, further research is needed to validate these approaches and identify optimal features and models for dyslexia diagnosis and treatment.","PeriodicalId":93575,"journal":{"name":"Journal of behavioral data science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Dyslexia with Machine Learning: A Comprehensive Review of Feature Selection, Algorithms, and Evaluation Metrics\",\"authors\":\"Velmurugan S\",\"doi\":\"10.35566/jbds/v3n1/s\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This literature review explores the use of machine learning-based approaches for the diagnosis and treatment of dyslexia, a learning disorder that affects reading and spelling skills. Various machine learning models, such as artificial neural networks (ANNs), support vector machines (SVMs), and decision trees, have been used to classify individuals as either dyslexic or non-dyslexic based on functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) data. These models have shown promising results for early detection and personalized treatment plans. However, further research is needed to validate these approaches and identify optimal features and models for dyslexia diagnosis and treatment.\",\"PeriodicalId\":93575,\"journal\":{\"name\":\"Journal of behavioral data science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of behavioral data science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35566/jbds/v3n1/s\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of behavioral data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35566/jbds/v3n1/s","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting Dyslexia with Machine Learning: A Comprehensive Review of Feature Selection, Algorithms, and Evaluation Metrics
This literature review explores the use of machine learning-based approaches for the diagnosis and treatment of dyslexia, a learning disorder that affects reading and spelling skills. Various machine learning models, such as artificial neural networks (ANNs), support vector machines (SVMs), and decision trees, have been used to classify individuals as either dyslexic or non-dyslexic based on functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) data. These models have shown promising results for early detection and personalized treatment plans. However, further research is needed to validate these approaches and identify optimal features and models for dyslexia diagnosis and treatment.