cm场理想类群对偶的注释

IF 0.3 4区 数学 Q4 MATHEMATICS
M. Kurihara
{"title":"cm场理想类群对偶的注释","authors":"M. Kurihara","doi":"10.5802/jtnb.1184","DOIUrl":null,"url":null,"abstract":"In this paper, for a CM abelian extension $K/k$ of number fields, we propose a conjecture which describes completely the Fitting ideal of the minus part of the Pontryagin dual of the $T$-ray class group of $K$ for a set $T$ of primes as a ${\\rm Gal}(K/k)$-module. Here, we emphasize that we consider the full class group, and do not throw away the ramifying primes (namely, the object we study is not the quotient of the class group by the subgroup generated by the classes of ramifying primes). We prove that our conjecture is a consequence of the equivariant Tamagawa number conjecture, and also prove that the Iwasawa theoretic version of our conjecture holds true under the assumption $\\mu=0$ without assuming eTNC.","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Notes on the dual of the ideal class groups of CM-fields\",\"authors\":\"M. Kurihara\",\"doi\":\"10.5802/jtnb.1184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, for a CM abelian extension $K/k$ of number fields, we propose a conjecture which describes completely the Fitting ideal of the minus part of the Pontryagin dual of the $T$-ray class group of $K$ for a set $T$ of primes as a ${\\\\rm Gal}(K/k)$-module. Here, we emphasize that we consider the full class group, and do not throw away the ramifying primes (namely, the object we study is not the quotient of the class group by the subgroup generated by the classes of ramifying primes). We prove that our conjecture is a consequence of the equivariant Tamagawa number conjecture, and also prove that the Iwasawa theoretic version of our conjecture holds true under the assumption $\\\\mu=0$ without assuming eTNC.\",\"PeriodicalId\":48896,\"journal\":{\"name\":\"Journal De Theorie Des Nombres De Bordeaux\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Theorie Des Nombres De Bordeaux\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/jtnb.1184\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1184","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

对于数域的CM阿贝尔扩展$K/ K$,我们提出了一个猜想,该猜想完全描述了$T$-射线类群$K$对于素数集$T$的Pontryagin对偶负部分的拟合理想为${\rm Gal}(K/ K)$-模。在这里,我们强调我们考虑的是全类群,而不是抛弃衍生素数(即我们研究的对象不是类群与衍生素数类所产生的子群的商)。我们证明了我们的猜想是等变Tamagawa数猜想的结果,并证明了我们猜想的Iwasawa理论版本在假设$\mu=0$而不假设eTNC的情况下成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Notes on the dual of the ideal class groups of CM-fields
In this paper, for a CM abelian extension $K/k$ of number fields, we propose a conjecture which describes completely the Fitting ideal of the minus part of the Pontryagin dual of the $T$-ray class group of $K$ for a set $T$ of primes as a ${\rm Gal}(K/k)$-module. Here, we emphasize that we consider the full class group, and do not throw away the ramifying primes (namely, the object we study is not the quotient of the class group by the subgroup generated by the classes of ramifying primes). We prove that our conjecture is a consequence of the equivariant Tamagawa number conjecture, and also prove that the Iwasawa theoretic version of our conjecture holds true under the assumption $\mu=0$ without assuming eTNC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
35
期刊介绍: The Journal de Théorie des Nombres de Bordeaux publishes original papers on number theory and related topics (not published elsewhere).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信