三点传递图张量乘积中的独立集

IF 0.6 4区 数学 Q3 MATHEMATICS
Hu Mao, Huajun Zhang
{"title":"三点传递图张量乘积中的独立集","authors":"Hu Mao, Huajun Zhang","doi":"10.11650/TJM/210104","DOIUrl":null,"url":null,"abstract":"The tensor product T (G1, G2, G3) of graphs G1, G2 and G3 is defined by V T (G1, G2, G3) = V (G1)× V (G2)× V (G3) and ET (G1, G2, G3) = {[(u1, u2, u3), (v1, v2, v3)] : |{i : (ui, vi) ∈ E(Gi)}| ≥ 2}. From this definition, it is easy to see that the preimage of the direct product of two independent sets of two factors under projections is an independent set of T (G1, G2, G3). So αT (G1, G2, G3) ≥ max{α(G1)α(G2)|G3|, α(G1)α(G3)|G2|, α(G2)α(G3)|G1|}. In this paper, we prove that the equality holds if G1 and G2 are vertex-transitive graphs and G3 is a circular graph, a Kneser graph, or a permutation graph. Furthermore, in this case, the structure of all maximum independent sets of T (G1, G2, G3) is determined.","PeriodicalId":22176,"journal":{"name":"Taiwanese Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Independent Sets in Tensor Products of Three Vertex-transitive\\n Graphs\",\"authors\":\"Hu Mao, Huajun Zhang\",\"doi\":\"10.11650/TJM/210104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The tensor product T (G1, G2, G3) of graphs G1, G2 and G3 is defined by V T (G1, G2, G3) = V (G1)× V (G2)× V (G3) and ET (G1, G2, G3) = {[(u1, u2, u3), (v1, v2, v3)] : |{i : (ui, vi) ∈ E(Gi)}| ≥ 2}. From this definition, it is easy to see that the preimage of the direct product of two independent sets of two factors under projections is an independent set of T (G1, G2, G3). So αT (G1, G2, G3) ≥ max{α(G1)α(G2)|G3|, α(G1)α(G3)|G2|, α(G2)α(G3)|G1|}. In this paper, we prove that the equality holds if G1 and G2 are vertex-transitive graphs and G3 is a circular graph, a Kneser graph, or a permutation graph. Furthermore, in this case, the structure of all maximum independent sets of T (G1, G2, G3) is determined.\",\"PeriodicalId\":22176,\"journal\":{\"name\":\"Taiwanese Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Taiwanese Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.11650/TJM/210104\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Taiwanese Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11650/TJM/210104","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

图G1、G2和G3的张量积T(G1、G2、G3)定义为V T(G1,G2,G3)=V(G1)×V(G2)×V。从这个定义中,很容易看出,在投影下两个因子的两个独立集合的直接乘积的前像是T(G1,G2,G3)的独立集合。因此,αT(G1,G2,G3)≥max{α(G1)α(G2)|G3|,α(G1。本文证明了当G1和G2是顶点传递图,而G3是圆图、Kneer图或置换图时,等式成立。此外,在这种情况下,确定T(G1,G2,G3)的所有最大独立集的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Independent Sets in Tensor Products of Three Vertex-transitive Graphs
The tensor product T (G1, G2, G3) of graphs G1, G2 and G3 is defined by V T (G1, G2, G3) = V (G1)× V (G2)× V (G3) and ET (G1, G2, G3) = {[(u1, u2, u3), (v1, v2, v3)] : |{i : (ui, vi) ∈ E(Gi)}| ≥ 2}. From this definition, it is easy to see that the preimage of the direct product of two independent sets of two factors under projections is an independent set of T (G1, G2, G3). So αT (G1, G2, G3) ≥ max{α(G1)α(G2)|G3|, α(G1)α(G3)|G2|, α(G2)α(G3)|G1|}. In this paper, we prove that the equality holds if G1 and G2 are vertex-transitive graphs and G3 is a circular graph, a Kneser graph, or a permutation graph. Furthermore, in this case, the structure of all maximum independent sets of T (G1, G2, G3) is determined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
35
审稿时长
3 months
期刊介绍: The Taiwanese Journal of Mathematics, published by the Mathematical Society of the Republic of China (Taiwan), is a continuation of the former Chinese Journal of Mathematics (1973-1996). It aims to publish original research papers and survey articles in all areas of mathematics. It will also occasionally publish proceedings of conferences co-organized by the Society. The purpose is to reflect the progress of the mathematical research in Taiwan and, by providing an international forum, to stimulate its further developments. The journal appears bimonthly each year beginning from 2008.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信