钠离子调节线粒体ROS

E. Ros
{"title":"钠离子调节线粒体ROS","authors":"E. Ros","doi":"10.20455/ros.2021.n.805","DOIUrl":null,"url":null,"abstract":"In addition to the diverse well-known physiological functions and pathophysiological effects of sodium ion (Na⁺), regulation of mitochondrial reactive oxygen species (ROS) by Na⁺ has recently been demonstrated by several studies published in highly influential journals. The findings from these studies, especially the proposed “cytosolic Na⁺‒Na⁺/Ca²⁺ exchanger‒mitochondrial ROS” axis, have greatly broadened our understanding of this most popular element in physiology and disease.\nREFERENCES\n\nKohlhaas M, Liu T, Knopp A, Zeller T, Ong MF, Bohm M, et al. Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes. Circulation 2010; 121(14):1606-13. doi: https://dx.doi.org/10.1161/CIRCULATIONAHA.109.914911.\nDey S, DeMazumder D, Sidor A, Foster DB, O'Rourke B. Mitochondrial ROS drive sudden cardiac death and chronic proteome remodeling in heart failure. Circ Res 2018; 123(3):356-71. doi: https://dx.doi.org/10.1161/CIRCRESAHA.118.312708.\nMurphy E, Eisner DA. Regulation of intracellular and mitochondrial sodium in health and disease. Circ Res 2009; 104(3):292-303. doi: https://dx.doi.org/10.1161/CIRCRESAHA.108.189050.\nAdrogue HJ, Madias NE. Sodium and potassium in the pathogenesis of hypertension. N Engl J Med 2007; 356(19):1966-78. doi: https://dx.doi.org/10.1056/NEJMra064486.\nHernansanz-Agustin P, Choya-Foces C, Carregal-Romero S, Ramos E, Oliva T, Villa-Pina T, et al. Na+ controls hypoxic signalling by the mitochondrial respiratory chain. Nature 2020; 586(7828):287-91. doi: https://dx.doi.org/10.1038/s41586-020-2551-y.\nWolf SG, Mutsafi Y, Dadosh T, Ilani T, Lansky Z, Horowitz B, et al. 3D visualization of mitochondrial solid-phase calcium stores in whole cells. Elife 2017; 6. doi: https://dx.doi.org/10.7554/eLife.29929.\nShadel GS, Horvath TL. Mitochondrial ROS signaling in organismal homeostasis. Cell 2015; 163(3):560-9. doi: https://dx.doi.org/10.1016/j.cell.2015.10.001.\nOberkampf M, Guillerey C, Mouries J, Rosenbaum P, Fayolle C, Bobard A, et al. Mitochondrial reactive oxygen species regulate the induction of CD8+ T cells by plasmacytoid dendritic cells. Nat Commun 2018; 9(1):2241. doi: https://dx.doi.org/10.1038/s41467-018-04686-8.\nSena LA, Li S, Jairaman A, Prakriya M, Ezponda T, Hildeman DA, et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 2013; 38(2):225-36. doi: https://dx.doi.org/10.1016/j.immuni.2012.10.020.\n","PeriodicalId":91793,"journal":{"name":"Reactive oxygen species (Apex, N.C.)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sodium Ion Regulates Mitochondrial ROS\",\"authors\":\"E. Ros\",\"doi\":\"10.20455/ros.2021.n.805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In addition to the diverse well-known physiological functions and pathophysiological effects of sodium ion (Na⁺), regulation of mitochondrial reactive oxygen species (ROS) by Na⁺ has recently been demonstrated by several studies published in highly influential journals. The findings from these studies, especially the proposed “cytosolic Na⁺‒Na⁺/Ca²⁺ exchanger‒mitochondrial ROS” axis, have greatly broadened our understanding of this most popular element in physiology and disease.\\nREFERENCES\\n\\nKohlhaas M, Liu T, Knopp A, Zeller T, Ong MF, Bohm M, et al. Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes. Circulation 2010; 121(14):1606-13. doi: https://dx.doi.org/10.1161/CIRCULATIONAHA.109.914911.\\nDey S, DeMazumder D, Sidor A, Foster DB, O'Rourke B. Mitochondrial ROS drive sudden cardiac death and chronic proteome remodeling in heart failure. Circ Res 2018; 123(3):356-71. doi: https://dx.doi.org/10.1161/CIRCRESAHA.118.312708.\\nMurphy E, Eisner DA. Regulation of intracellular and mitochondrial sodium in health and disease. Circ Res 2009; 104(3):292-303. doi: https://dx.doi.org/10.1161/CIRCRESAHA.108.189050.\\nAdrogue HJ, Madias NE. Sodium and potassium in the pathogenesis of hypertension. N Engl J Med 2007; 356(19):1966-78. doi: https://dx.doi.org/10.1056/NEJMra064486.\\nHernansanz-Agustin P, Choya-Foces C, Carregal-Romero S, Ramos E, Oliva T, Villa-Pina T, et al. Na+ controls hypoxic signalling by the mitochondrial respiratory chain. Nature 2020; 586(7828):287-91. doi: https://dx.doi.org/10.1038/s41586-020-2551-y.\\nWolf SG, Mutsafi Y, Dadosh T, Ilani T, Lansky Z, Horowitz B, et al. 3D visualization of mitochondrial solid-phase calcium stores in whole cells. Elife 2017; 6. doi: https://dx.doi.org/10.7554/eLife.29929.\\nShadel GS, Horvath TL. Mitochondrial ROS signaling in organismal homeostasis. Cell 2015; 163(3):560-9. doi: https://dx.doi.org/10.1016/j.cell.2015.10.001.\\nOberkampf M, Guillerey C, Mouries J, Rosenbaum P, Fayolle C, Bobard A, et al. Mitochondrial reactive oxygen species regulate the induction of CD8+ T cells by plasmacytoid dendritic cells. Nat Commun 2018; 9(1):2241. doi: https://dx.doi.org/10.1038/s41467-018-04686-8.\\nSena LA, Li S, Jairaman A, Prakriya M, Ezponda T, Hildeman DA, et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 2013; 38(2):225-36. doi: https://dx.doi.org/10.1016/j.immuni.2012.10.020.\\n\",\"PeriodicalId\":91793,\"journal\":{\"name\":\"Reactive oxygen species (Apex, N.C.)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reactive oxygen species (Apex, N.C.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20455/ros.2021.n.805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reactive oxygen species (Apex, N.C.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20455/ros.2021.n.805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

除了钠离子(Na +)多种众所周知的生理功能和病理生理作用外,Na +对线粒体活性氧(ROS)的调节最近也被几篇发表在极具影响力期刊上的研究证实。这些研究的发现,特别是提出的“细胞质Na + -Na + /Ca +交换器-线粒体ROS”轴,极大地拓宽了我们对这一生理和疾病中最受欢迎的元素的理解。[参考文献]刘涛,刘洪涛,李建平,王晓明,等。升高的胞质Na+增加了衰竭心肌细胞中活性氧的线粒体形成。发行量2010;121(14): 1606 - 13所示。doi: https://dx.doi.org/10.1161/CIRCULATIONAHA.109.914911.Dey S, DeMazumder D, Sidor A, Foster DB, O'Rourke B.线粒体ROS驱动心力衰竭猝死和慢性蛋白质组重塑。Circ Res 2018;123(3): 356 - 71。doi: https://dx.doi.org/10.1161/CIRCRESAHA.118.312708.Murphy E, Eisner DA。细胞内和线粒体钠在健康和疾病中的调节。Circ Res 2009;104(3): 292 - 303。doi: https://dx.doi.org/10.1161/CIRCRESAHA.108.189050.Adrogue HJ, madas NE。钠钾在高血压发病机制中的作用。中华医学杂志2007;356(19): 1966 - 78。doi: https://dx.doi.org/10.1056/NEJMra064486.Hernansanz-Agustin P, choya - foes C, Carregal-Romero S, Ramos E, Oliva T, Villa-Pina T,等。Na+通过线粒体呼吸链控制缺氧信号。自然2020;586(7828): 287 - 91。doi: https://dx.doi.org/10.1038/s41586-020-2551-y.Wolf SG, Mutsafi Y, Dadosh T, Ilani T, Lansky Z, Horowitz B,等。全细胞线粒体固相钙储存的3D可视化。Elife 2017;6. doi: https://dx.doi.org/10.7554/eLife.29929.Shadel GS, Horvath TL.线粒体ROS信号在机体内稳态。细胞2015;163(3): 560 - 9。doi: https://dx.doi.org/10.1016/j.cell.2015.10.001.Oberkampf M, Guillerey C, Mouries J, Rosenbaum P, Fayolle C, Bobard A,等。线粒体活性氧调节浆细胞样树突状细胞对CD8+ T细胞的诱导。Nat common 2018;9(1): 2241。doi: https://dx.doi.org/10.1038/s41467-018-04686-8.Sena LA, Li S, Jairaman A, Prakriya M, Ezponda T, Hildeman DA,等。线粒体是通过活性氧信号激活抗原特异性T细胞所必需的。免疫2013;38(2): 225 - 36。doi: https://dx.doi.org/10.1016/j.immuni.2012.10.020。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sodium Ion Regulates Mitochondrial ROS
In addition to the diverse well-known physiological functions and pathophysiological effects of sodium ion (Na⁺), regulation of mitochondrial reactive oxygen species (ROS) by Na⁺ has recently been demonstrated by several studies published in highly influential journals. The findings from these studies, especially the proposed “cytosolic Na⁺‒Na⁺/Ca²⁺ exchanger‒mitochondrial ROS” axis, have greatly broadened our understanding of this most popular element in physiology and disease. REFERENCES Kohlhaas M, Liu T, Knopp A, Zeller T, Ong MF, Bohm M, et al. Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes. Circulation 2010; 121(14):1606-13. doi: https://dx.doi.org/10.1161/CIRCULATIONAHA.109.914911. Dey S, DeMazumder D, Sidor A, Foster DB, O'Rourke B. Mitochondrial ROS drive sudden cardiac death and chronic proteome remodeling in heart failure. Circ Res 2018; 123(3):356-71. doi: https://dx.doi.org/10.1161/CIRCRESAHA.118.312708. Murphy E, Eisner DA. Regulation of intracellular and mitochondrial sodium in health and disease. Circ Res 2009; 104(3):292-303. doi: https://dx.doi.org/10.1161/CIRCRESAHA.108.189050. Adrogue HJ, Madias NE. Sodium and potassium in the pathogenesis of hypertension. N Engl J Med 2007; 356(19):1966-78. doi: https://dx.doi.org/10.1056/NEJMra064486. Hernansanz-Agustin P, Choya-Foces C, Carregal-Romero S, Ramos E, Oliva T, Villa-Pina T, et al. Na+ controls hypoxic signalling by the mitochondrial respiratory chain. Nature 2020; 586(7828):287-91. doi: https://dx.doi.org/10.1038/s41586-020-2551-y. Wolf SG, Mutsafi Y, Dadosh T, Ilani T, Lansky Z, Horowitz B, et al. 3D visualization of mitochondrial solid-phase calcium stores in whole cells. Elife 2017; 6. doi: https://dx.doi.org/10.7554/eLife.29929. Shadel GS, Horvath TL. Mitochondrial ROS signaling in organismal homeostasis. Cell 2015; 163(3):560-9. doi: https://dx.doi.org/10.1016/j.cell.2015.10.001. Oberkampf M, Guillerey C, Mouries J, Rosenbaum P, Fayolle C, Bobard A, et al. Mitochondrial reactive oxygen species regulate the induction of CD8+ T cells by plasmacytoid dendritic cells. Nat Commun 2018; 9(1):2241. doi: https://dx.doi.org/10.1038/s41467-018-04686-8. Sena LA, Li S, Jairaman A, Prakriya M, Ezponda T, Hildeman DA, et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 2013; 38(2):225-36. doi: https://dx.doi.org/10.1016/j.immuni.2012.10.020.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信