Anders Munch, Marie Skov Breum, T. Martinussen, T. Gerds
{"title":"非马尔可夫疾病-死亡模型的状态职业概率的目标估计","authors":"Anders Munch, Marie Skov Breum, T. Martinussen, T. Gerds","doi":"10.1111/sjos.12644","DOIUrl":null,"url":null,"abstract":"We use semi‐parametric efficiency theory to derive a class of estimators for the state occupation probabilities of the continuous‐time irreversible illness‐death model. We consider both the setting with and without additional baseline information available, where we impose no specific functional form on the intensity functions of the model. We show that any estimator in the class is asymptotically linear under suitable assumptions about the estimators of the intensity functions. In particular, the assumptions are weak enough to allow the use of data‐adaptive methods, which is important for making the identifying assumption of coarsening at random plausible in realistic settings. We suggest a flexible method for estimating the transition intensity functions of the illness‐death model based on penalized Poisson regression. We apply this method to estimate the nuisance parameters of an illness‐death model in a simulation study and a real‐world application.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":"50 1","pages":"1532 - 1551"},"PeriodicalIF":0.8000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeted estimation of state occupation probabilities for the non‐Markov illness‐death model\",\"authors\":\"Anders Munch, Marie Skov Breum, T. Martinussen, T. Gerds\",\"doi\":\"10.1111/sjos.12644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use semi‐parametric efficiency theory to derive a class of estimators for the state occupation probabilities of the continuous‐time irreversible illness‐death model. We consider both the setting with and without additional baseline information available, where we impose no specific functional form on the intensity functions of the model. We show that any estimator in the class is asymptotically linear under suitable assumptions about the estimators of the intensity functions. In particular, the assumptions are weak enough to allow the use of data‐adaptive methods, which is important for making the identifying assumption of coarsening at random plausible in realistic settings. We suggest a flexible method for estimating the transition intensity functions of the illness‐death model based on penalized Poisson regression. We apply this method to estimate the nuisance parameters of an illness‐death model in a simulation study and a real‐world application.\",\"PeriodicalId\":49567,\"journal\":{\"name\":\"Scandinavian Journal of Statistics\",\"volume\":\"50 1\",\"pages\":\"1532 - 1551\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scandinavian Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/sjos.12644\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/sjos.12644","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Targeted estimation of state occupation probabilities for the non‐Markov illness‐death model
We use semi‐parametric efficiency theory to derive a class of estimators for the state occupation probabilities of the continuous‐time irreversible illness‐death model. We consider both the setting with and without additional baseline information available, where we impose no specific functional form on the intensity functions of the model. We show that any estimator in the class is asymptotically linear under suitable assumptions about the estimators of the intensity functions. In particular, the assumptions are weak enough to allow the use of data‐adaptive methods, which is important for making the identifying assumption of coarsening at random plausible in realistic settings. We suggest a flexible method for estimating the transition intensity functions of the illness‐death model based on penalized Poisson regression. We apply this method to estimate the nuisance parameters of an illness‐death model in a simulation study and a real‐world application.
期刊介绍:
The Scandinavian Journal of Statistics is internationally recognised as one of the leading statistical journals in the world. It was founded in 1974 by four Scandinavian statistical societies. Today more than eighty per cent of the manuscripts are submitted from outside Scandinavia.
It is an international journal devoted to reporting significant and innovative original contributions to statistical methodology, both theory and applications.
The journal specializes in statistical modelling showing particular appreciation of the underlying substantive research problems.
The emergence of specialized methods for analysing longitudinal and spatial data is just one example of an area of important methodological development in which the Scandinavian Journal of Statistics has a particular niche.