{"title":"希尔涡旋附近的细丝化","authors":"Kyudong Choi, In-Jee Jeong","doi":"10.1080/03605302.2022.2139721","DOIUrl":null,"url":null,"abstract":"Abstract For the axi-symmetric incompressible Euler equations, we prove linear in time filamentation near Hill’s vortex: there exists an arbitrary small outward perturbation growing linearly for all times. This is based on combining the recent nonlinear orbital stability obtained by the first author with a dynamical bootstrapping scheme for particle trajectories. These results rigorously confirm numerical simulations by Pozrikidis in 1986.","PeriodicalId":50657,"journal":{"name":"Communications in Partial Differential Equations","volume":"48 1","pages":"54 - 85"},"PeriodicalIF":2.1000,"publicationDate":"2021-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Filamentation near Hill’s vortex\",\"authors\":\"Kyudong Choi, In-Jee Jeong\",\"doi\":\"10.1080/03605302.2022.2139721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For the axi-symmetric incompressible Euler equations, we prove linear in time filamentation near Hill’s vortex: there exists an arbitrary small outward perturbation growing linearly for all times. This is based on combining the recent nonlinear orbital stability obtained by the first author with a dynamical bootstrapping scheme for particle trajectories. These results rigorously confirm numerical simulations by Pozrikidis in 1986.\",\"PeriodicalId\":50657,\"journal\":{\"name\":\"Communications in Partial Differential Equations\",\"volume\":\"48 1\",\"pages\":\"54 - 85\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/03605302.2022.2139721\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03605302.2022.2139721","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract For the axi-symmetric incompressible Euler equations, we prove linear in time filamentation near Hill’s vortex: there exists an arbitrary small outward perturbation growing linearly for all times. This is based on combining the recent nonlinear orbital stability obtained by the first author with a dynamical bootstrapping scheme for particle trajectories. These results rigorously confirm numerical simulations by Pozrikidis in 1986.
期刊介绍:
This journal aims to publish high quality papers concerning any theoretical aspect of partial differential equations, as well as its applications to other areas of mathematics. Suitability of any paper is at the discretion of the editors. We seek to present the most significant advances in this central field to a wide readership which includes researchers and graduate students in mathematics and the more mathematical aspects of physics and engineering.