对称(1,1)-相干对和Sobolev正交多项式:计算傅里叶系数的算法

Q4 Mathematics
Herbert Dueñas Ruiz, F. Marcellán, A. Molano
{"title":"对称(1,1)-相干对和Sobolev正交多项式:计算傅里叶系数的算法","authors":"Herbert Dueñas Ruiz, F. Marcellán, A. Molano","doi":"10.15446/recolma.v53n2.85524","DOIUrl":null,"url":null,"abstract":"In the pioneering paper [13], the concept of Coherent Pair was introduced by Iserles et al. In particular, an algorithm to compute Fourier Coefficients in expansions of Sobolev orthogonal polynomials defined from coherent pairs of measures supported on an infinite subset of the real line is described. In this paper we extend such an algorithm in the framework of the so called Symmetric (1, 1)-Coherent Pairs presented in [8].","PeriodicalId":38102,"journal":{"name":"Revista Colombiana de Matematicas","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On Symmetric (1, 1)-Coherent Pairs and Sobolev Orthogonal polynomials: an algorithm to compute Fourier coefficients\",\"authors\":\"Herbert Dueñas Ruiz, F. Marcellán, A. Molano\",\"doi\":\"10.15446/recolma.v53n2.85524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the pioneering paper [13], the concept of Coherent Pair was introduced by Iserles et al. In particular, an algorithm to compute Fourier Coefficients in expansions of Sobolev orthogonal polynomials defined from coherent pairs of measures supported on an infinite subset of the real line is described. In this paper we extend such an algorithm in the framework of the so called Symmetric (1, 1)-Coherent Pairs presented in [8].\",\"PeriodicalId\":38102,\"journal\":{\"name\":\"Revista Colombiana de Matematicas\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Colombiana de Matematicas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15446/recolma.v53n2.85524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana de Matematicas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/recolma.v53n2.85524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

摘要

在开创性的论文[13]中,Iserles等人引入了相干对的概念。特别是,描述了一种计算Sobolev正交多项式展开中傅立叶系数的算法,该算法由实线的无限子集上支持的相干测度对定义。在本文中,我们在[8]中提出的所谓对称(1,1)-相干对的框架中扩展了这种算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Symmetric (1, 1)-Coherent Pairs and Sobolev Orthogonal polynomials: an algorithm to compute Fourier coefficients
In the pioneering paper [13], the concept of Coherent Pair was introduced by Iserles et al. In particular, an algorithm to compute Fourier Coefficients in expansions of Sobolev orthogonal polynomials defined from coherent pairs of measures supported on an infinite subset of the real line is described. In this paper we extend such an algorithm in the framework of the so called Symmetric (1, 1)-Coherent Pairs presented in [8].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Colombiana de Matematicas
Revista Colombiana de Matematicas Mathematics-Mathematics (all)
CiteScore
0.60
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信