基于k近邻的有效特征面部情感识别

Q2 Decision Sciences
Swapna Subudhiray, H. Palo, Niva Das
{"title":"基于k近邻的有效特征面部情感识别","authors":"Swapna Subudhiray, H. Palo, Niva Das","doi":"10.11591/ijai.v12.i1.pp57-65","DOIUrl":null,"url":null,"abstract":"In this paper, an experiment has been carried out based on a simple k-nearest neighbor (kNN) classifier to investigate the capabilities of three extracted facial features for the better recognition of facial emotions. The feature extraction techniques used are histogram of oriented gradient (HOG), Gabor, and local binary pattern (LBP). A comparison has been made using performance indices such as average recognition accuracy, overall recognition accuracy, precision, recall, kappa coefficient, and computation time. Two databases, i.e., Cohn-Kanade (CK+) and Japanese female facial expression (JAFFE) have been used here. Different training to testing data division ratios is explored to find out the best one from the performance point of view of the three extracted features, Gabor produced 94.8%, which is the best among all in terms of average accuracy though the computational time required is the highest. LBP showed 88.2% average accuracy with a computational time less than that of Gabor while HOG showed minimum average accuracy of 55.2% with the lowest computation time.","PeriodicalId":52221,"journal":{"name":"IAES International Journal of Artificial Intelligence","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"K-nearest neighbor based facial emotion recognition using effective features\",\"authors\":\"Swapna Subudhiray, H. Palo, Niva Das\",\"doi\":\"10.11591/ijai.v12.i1.pp57-65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an experiment has been carried out based on a simple k-nearest neighbor (kNN) classifier to investigate the capabilities of three extracted facial features for the better recognition of facial emotions. The feature extraction techniques used are histogram of oriented gradient (HOG), Gabor, and local binary pattern (LBP). A comparison has been made using performance indices such as average recognition accuracy, overall recognition accuracy, precision, recall, kappa coefficient, and computation time. Two databases, i.e., Cohn-Kanade (CK+) and Japanese female facial expression (JAFFE) have been used here. Different training to testing data division ratios is explored to find out the best one from the performance point of view of the three extracted features, Gabor produced 94.8%, which is the best among all in terms of average accuracy though the computational time required is the highest. LBP showed 88.2% average accuracy with a computational time less than that of Gabor while HOG showed minimum average accuracy of 55.2% with the lowest computation time.\",\"PeriodicalId\":52221,\"journal\":{\"name\":\"IAES International Journal of Artificial Intelligence\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IAES International Journal of Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijai.v12.i1.pp57-65\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v12.i1.pp57-65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,基于一个简单的k近邻(kNN)分类器进行了一个实验,以研究三个提取的面部特征对更好地识别面部情绪的能力。使用的特征提取技术有定向梯度直方图(HOG)、Gabor和局部二进制模式(LBP)。使用平均识别准确度、整体识别准确度和准确度、召回率、kappa系数和计算时间等性能指标进行了比较。这里使用了两个数据库,即Cohn Kanade(CK+)和日本女性面部表情(JAFFE)。从性能的角度出发,探索了不同的训练-测试数据划分比率,以找出最佳的一个。从提取的三个特征的性能角度来看,Gabor产生了94.8%的平均精度,尽管所需的计算时间最高,但在所有特征中是最好的。LBP在计算时间少于Gabor的情况下显示出88.2%的平均准确度,而HOG在计算时间最低的情况下表现出55.2%的最小平均准确度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
K-nearest neighbor based facial emotion recognition using effective features
In this paper, an experiment has been carried out based on a simple k-nearest neighbor (kNN) classifier to investigate the capabilities of three extracted facial features for the better recognition of facial emotions. The feature extraction techniques used are histogram of oriented gradient (HOG), Gabor, and local binary pattern (LBP). A comparison has been made using performance indices such as average recognition accuracy, overall recognition accuracy, precision, recall, kappa coefficient, and computation time. Two databases, i.e., Cohn-Kanade (CK+) and Japanese female facial expression (JAFFE) have been used here. Different training to testing data division ratios is explored to find out the best one from the performance point of view of the three extracted features, Gabor produced 94.8%, which is the best among all in terms of average accuracy though the computational time required is the highest. LBP showed 88.2% average accuracy with a computational time less than that of Gabor while HOG showed minimum average accuracy of 55.2% with the lowest computation time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IAES International Journal of Artificial Intelligence
IAES International Journal of Artificial Intelligence Decision Sciences-Information Systems and Management
CiteScore
3.90
自引率
0.00%
发文量
170
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信