二阶椭圆型方程的一种全局随机游走网格算法

IF 0.8 Q3 STATISTICS & PROBABILITY
K. Sabelfeld, D. Smirnov
{"title":"二阶椭圆型方程的一种全局随机游走网格算法","authors":"K. Sabelfeld, D. Smirnov","doi":"10.1515/mcma-2021-2092","DOIUrl":null,"url":null,"abstract":"Abstract We suggest in this paper a global random walk on grid (GRWG) method for solving second order elliptic equations. The equation may have constant or variable coefficients. The GRWS method calculates the solution in any desired family of m prescribed points of the gird in contrast to the classical stochastic differential equation based Feynman–Kac formula, and the conventional random walk on spheres (RWS) algorithm as well. The method uses only N trajectories instead of mN trajectories in the RWS algorithm and the Feynman–Kac formula. The idea is based on the symmetry property of the Green function and a double randomization approach.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"27 1","pages":"211 - 225"},"PeriodicalIF":0.8000,"publicationDate":"2021-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A global random walk on grid algorithm for second order elliptic equations\",\"authors\":\"K. Sabelfeld, D. Smirnov\",\"doi\":\"10.1515/mcma-2021-2092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We suggest in this paper a global random walk on grid (GRWG) method for solving second order elliptic equations. The equation may have constant or variable coefficients. The GRWS method calculates the solution in any desired family of m prescribed points of the gird in contrast to the classical stochastic differential equation based Feynman–Kac formula, and the conventional random walk on spheres (RWS) algorithm as well. The method uses only N trajectories instead of mN trajectories in the RWS algorithm and the Feynman–Kac formula. The idea is based on the symmetry property of the Green function and a double randomization approach.\",\"PeriodicalId\":46576,\"journal\":{\"name\":\"Monte Carlo Methods and Applications\",\"volume\":\"27 1\",\"pages\":\"211 - 225\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monte Carlo Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mcma-2021-2092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2021-2092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 5

摘要

摘要本文提出了一种求解二阶椭圆型方程的全局随机网格行走(GRWG)方法。该方程可以具有常数系数或可变系数。与基于经典随机微分方程的Feynman–Kac公式和传统的随机球上行走(RWS)算法相比,GRWS方法计算网格中任意m个指定点族中的解。该方法在RWS算法和Feynman–Kac公式中仅使用N条轨迹,而不是mN条轨迹。这个想法是基于格林函数的对称性和双重随机化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A global random walk on grid algorithm for second order elliptic equations
Abstract We suggest in this paper a global random walk on grid (GRWG) method for solving second order elliptic equations. The equation may have constant or variable coefficients. The GRWS method calculates the solution in any desired family of m prescribed points of the gird in contrast to the classical stochastic differential equation based Feynman–Kac formula, and the conventional random walk on spheres (RWS) algorithm as well. The method uses only N trajectories instead of mN trajectories in the RWS algorithm and the Feynman–Kac formula. The idea is based on the symmetry property of the Green function and a double randomization approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Monte Carlo Methods and Applications
Monte Carlo Methods and Applications STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
22.20%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信