G. D. Crescenzo, Matluba Khodjaeva, Delaram Kahrobaei, V. Shpilrain
{"title":"委托群指数的乘积应用于签名方案(提交给JMC 2019年特别版NutMiC)","authors":"G. D. Crescenzo, Matluba Khodjaeva, Delaram Kahrobaei, V. Shpilrain","doi":"10.1515/jmc-2019-0036","DOIUrl":null,"url":null,"abstract":"Abstract Many public-key cryptosystems and, more generally, cryptographic protocols, use group exponentiations as important primitive operations. To expand the applicability of these solutions to computationally weaker devices, it has been advocated that a computationally weaker client (i.e., capable of performing a relatively small number of modular multiplications) delegates such primitive operations to a computationally stronger server. Important requirements for such delegation protocols include privacy of the client’s input exponent and security of the client’s output, in the sense of detecting, except for very small probability, any malicious server’s attempt to convince the client of an incorrect exponentiation result. Only recently, efficient protocols for the delegation of a fixed-based exponentiation, over cyclic and RSA-type groups with certain properties, have been presented and proved to satisfy both requirements. In this paper we show that a product of many fixed-base exponentiations, over a cyclic groups with certain properties, can be privately and securely delegated by keeping the client’s online number of modular multiplications only slightly larger than in the delegation of a single exponentiation. We use this result to show the first delegations of entire cryptographic schemes: the well-known digital signature schemes by El-Gamal, Schnorr and Okamoto, over the q-order subgroup in ℤp, for p, q primes, as well as their variants based on elliptic curves. Previous efficient delegation results were limited to the delegation of single algorithms within cryptographic schemes.","PeriodicalId":43866,"journal":{"name":"Journal of Mathematical Cryptology","volume":"14 1","pages":"438 - 459"},"PeriodicalIF":0.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/jmc-2019-0036","citationCount":"0","resultStr":"{\"title\":\"Delegating a Product of Group Exponentiations with Application to Signature Schemes (Submission to Special NutMiC 2019 Issue of JMC)\",\"authors\":\"G. D. Crescenzo, Matluba Khodjaeva, Delaram Kahrobaei, V. Shpilrain\",\"doi\":\"10.1515/jmc-2019-0036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Many public-key cryptosystems and, more generally, cryptographic protocols, use group exponentiations as important primitive operations. To expand the applicability of these solutions to computationally weaker devices, it has been advocated that a computationally weaker client (i.e., capable of performing a relatively small number of modular multiplications) delegates such primitive operations to a computationally stronger server. Important requirements for such delegation protocols include privacy of the client’s input exponent and security of the client’s output, in the sense of detecting, except for very small probability, any malicious server’s attempt to convince the client of an incorrect exponentiation result. Only recently, efficient protocols for the delegation of a fixed-based exponentiation, over cyclic and RSA-type groups with certain properties, have been presented and proved to satisfy both requirements. In this paper we show that a product of many fixed-base exponentiations, over a cyclic groups with certain properties, can be privately and securely delegated by keeping the client’s online number of modular multiplications only slightly larger than in the delegation of a single exponentiation. We use this result to show the first delegations of entire cryptographic schemes: the well-known digital signature schemes by El-Gamal, Schnorr and Okamoto, over the q-order subgroup in ℤp, for p, q primes, as well as their variants based on elliptic curves. Previous efficient delegation results were limited to the delegation of single algorithms within cryptographic schemes.\",\"PeriodicalId\":43866,\"journal\":{\"name\":\"Journal of Mathematical Cryptology\",\"volume\":\"14 1\",\"pages\":\"438 - 459\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/jmc-2019-0036\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jmc-2019-0036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmc-2019-0036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Delegating a Product of Group Exponentiations with Application to Signature Schemes (Submission to Special NutMiC 2019 Issue of JMC)
Abstract Many public-key cryptosystems and, more generally, cryptographic protocols, use group exponentiations as important primitive operations. To expand the applicability of these solutions to computationally weaker devices, it has been advocated that a computationally weaker client (i.e., capable of performing a relatively small number of modular multiplications) delegates such primitive operations to a computationally stronger server. Important requirements for such delegation protocols include privacy of the client’s input exponent and security of the client’s output, in the sense of detecting, except for very small probability, any malicious server’s attempt to convince the client of an incorrect exponentiation result. Only recently, efficient protocols for the delegation of a fixed-based exponentiation, over cyclic and RSA-type groups with certain properties, have been presented and proved to satisfy both requirements. In this paper we show that a product of many fixed-base exponentiations, over a cyclic groups with certain properties, can be privately and securely delegated by keeping the client’s online number of modular multiplications only slightly larger than in the delegation of a single exponentiation. We use this result to show the first delegations of entire cryptographic schemes: the well-known digital signature schemes by El-Gamal, Schnorr and Okamoto, over the q-order subgroup in ℤp, for p, q primes, as well as their variants based on elliptic curves. Previous efficient delegation results were limited to the delegation of single algorithms within cryptographic schemes.