基于预紧弹簧机构的动量交换冲击阻尼器的基础研究

IF 0.8 4区 工程技术 Q4 ACOUSTICS
L. Son, M. Bur, M. Rusli, H. Matsuhisa, Keisuke Yamada, H. Utsuno
{"title":"基于预紧弹簧机构的动量交换冲击阻尼器的基础研究","authors":"L. Son, M. Bur, M. Rusli, H. Matsuhisa, Keisuke Yamada, H. Utsuno","doi":"10.20855/IJAV.2017.22.4487","DOIUrl":null,"url":null,"abstract":"A shock load occurred in a short time duration can lead to dangerous effect on the machine or structure. The use of conventional technique for shock vibration control by modifying the systems damping reduces the steady-state response of the system. However, this method fails to attenuate a large acceleration peak at the moment after the shock. An alternative method for reducing the maximum acceleration peak due to shock load using the principle of momentum exchange has been developed. When the shock excitation frequency is much larger in comparison with the main mass natural frequency, the passive momentum exchange impact damper(PMEID) produces good performance. However, the performance of PMEID decreases as the shock excitation frequency close to the main mass natural frequency. In this research, a simple technique to improve the performance of PMEID utilizing the pre-straining spring mechanism (PSMEID) is proposed. The dynamic model of the system with PSMEID is derived. Next, the simulation is conducted to evaluate the effectiveness of the proposed method.","PeriodicalId":49185,"journal":{"name":"International Journal of Acoustics and Vibration","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Fundamental Study of Momentum Exchange Impact Damper Using Pre-straining Spring Mechanism\",\"authors\":\"L. Son, M. Bur, M. Rusli, H. Matsuhisa, Keisuke Yamada, H. Utsuno\",\"doi\":\"10.20855/IJAV.2017.22.4487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A shock load occurred in a short time duration can lead to dangerous effect on the machine or structure. The use of conventional technique for shock vibration control by modifying the systems damping reduces the steady-state response of the system. However, this method fails to attenuate a large acceleration peak at the moment after the shock. An alternative method for reducing the maximum acceleration peak due to shock load using the principle of momentum exchange has been developed. When the shock excitation frequency is much larger in comparison with the main mass natural frequency, the passive momentum exchange impact damper(PMEID) produces good performance. However, the performance of PMEID decreases as the shock excitation frequency close to the main mass natural frequency. In this research, a simple technique to improve the performance of PMEID utilizing the pre-straining spring mechanism (PSMEID) is proposed. The dynamic model of the system with PSMEID is derived. Next, the simulation is conducted to evaluate the effectiveness of the proposed method.\",\"PeriodicalId\":49185,\"journal\":{\"name\":\"International Journal of Acoustics and Vibration\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Acoustics and Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.20855/IJAV.2017.22.4487\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Acoustics and Vibration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.20855/IJAV.2017.22.4487","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 7

摘要

在短时间内发生的冲击载荷会对机器或结构造成危险的影响。传统的冲击振动控制方法是通过改变系统的阻尼来降低系统的稳态响应。然而,这种方法不能在冲击后的瞬间衰减一个大的加速度峰值。利用动量交换原理,提出了一种减少冲击载荷引起的最大加速度峰值的替代方法。当激波激励频率比主质量固有频率大得多时,被动动量交换冲击阻尼器(PMEID)具有良好的性能。当激波激振频率接近主质量固有频率时,PMEID的性能下降。在本研究中,提出了一种利用预应变弹簧机构(PMEID)来提高PMEID性能的简单技术。导出了带PSMEID的系统的动态模型。然后,通过仿真对所提方法的有效性进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fundamental Study of Momentum Exchange Impact Damper Using Pre-straining Spring Mechanism
A shock load occurred in a short time duration can lead to dangerous effect on the machine or structure. The use of conventional technique for shock vibration control by modifying the systems damping reduces the steady-state response of the system. However, this method fails to attenuate a large acceleration peak at the moment after the shock. An alternative method for reducing the maximum acceleration peak due to shock load using the principle of momentum exchange has been developed. When the shock excitation frequency is much larger in comparison with the main mass natural frequency, the passive momentum exchange impact damper(PMEID) produces good performance. However, the performance of PMEID decreases as the shock excitation frequency close to the main mass natural frequency. In this research, a simple technique to improve the performance of PMEID utilizing the pre-straining spring mechanism (PSMEID) is proposed. The dynamic model of the system with PSMEID is derived. Next, the simulation is conducted to evaluate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Acoustics and Vibration
International Journal of Acoustics and Vibration ACOUSTICS-ENGINEERING, MECHANICAL
CiteScore
1.60
自引率
10.00%
发文量
0
审稿时长
12 months
期刊介绍: The International Journal of Acoustics and Vibration (IJAV) is the refereed open-access journal of the International Institute of Acoustics and Vibration (IIAV). The IIAV is a non-profit international scientific society founded in 1995. The primary objective of the Institute is to advance the science of acoustics and vibration by creating an international organization that is responsive to the needs of scientists and engineers concerned with acoustics and vibration problems all around the world. Manuscripts of articles, technical notes and letters-to-the-editor should be submitted to the Editor-in-Chief via the on-line submission system. Authors wishing to submit an article need to log in on the IJAV website first. Users logged into the website are able to submit new articles, track the status of their articles already submitted, upload revised articles, responses and/or rebuttals to reviewers, figures, biographies, photographs, copyright transfer agreements, and send comments to the editor. Each time the status of an article submitted changes, the author will also be notified automatically by email. IIAV members (in good standing for at least six months) can publish in IJAV free of charge and their papers will be displayed on-line immediately after they have been edited and laid-out. Non-IIAV members will be required to pay a mandatory Article Processing Charge (APC) of $200 USD if the manuscript is accepted for publication after review. The APC fee allows IIAV to make your research freely available to all readers using the Open Access model. In addition, Non-IIAV members who pay an extra voluntary publication fee (EVPF) of $500 USD will be granted expedited publication in the IJAV Journal and their papers can be displayed on the Internet after acceptance. If the $200 USD (APC) publication fee is not honored, papers will not be published. Authors who do not pay the voluntary fixed fee of $500 USD will have their papers published but there may be a considerable delay. The English text of the papers must be of high quality. If the text submitted is of low quality the manuscript will be more than likely rejected. For authors whose first language is not English, we recommend having their manuscripts reviewed and edited prior to submission by a native English speaker with scientific expertise. There are many commercial editing services which can provide this service at a cost to the authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信