{"title":"注塑过程监控的时间序列数据:高采样率效益的定量研究","authors":"Lucas Bogedale, Alexander Schrodt, H. Heim","doi":"10.1515/ipp-2022-4258","DOIUrl":null,"url":null,"abstract":"Abstract Process monitoring systems are playing an increasingly important role in reducing production capacity losses in injection molding. Process monitoring and optimization systems are mostly based on processing data of injection molding machine control systems. These data consist of scalar data and time series. This paper introduces a novel approach to modelling injection molding processes using only time series data and evaluates the quantitative influences of varying sampling times on calculation of integral values and model quality. On the basis of the first experiment, it is shown that the sampling rates of these time series have a large influence on information which can be derived from this data (e.g. injection work). These findings provide an assessment of whether the effort is justified for the respective requirements on the accuracy of the injection work and other parameters derived from the time series. In the second experiment, a model is presented which uses only the injection flow and injection pressure profile as input and achieves high coefficients of determination for the prediction of the part weight, despite the absence of mold sensor data and scalar data. It is shown that higher sampling rates of time series results in higher prediction quality of these models. This improves the understanding of the data needed for high quality machine learning models of injection molding processes and enable users to estimate a lower bound for the sample rates of time series for their use cases.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time series data for process monitoring in injection molding: a quantitative study of the benefits of a high sampling rate\",\"authors\":\"Lucas Bogedale, Alexander Schrodt, H. Heim\",\"doi\":\"10.1515/ipp-2022-4258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Process monitoring systems are playing an increasingly important role in reducing production capacity losses in injection molding. Process monitoring and optimization systems are mostly based on processing data of injection molding machine control systems. These data consist of scalar data and time series. This paper introduces a novel approach to modelling injection molding processes using only time series data and evaluates the quantitative influences of varying sampling times on calculation of integral values and model quality. On the basis of the first experiment, it is shown that the sampling rates of these time series have a large influence on information which can be derived from this data (e.g. injection work). These findings provide an assessment of whether the effort is justified for the respective requirements on the accuracy of the injection work and other parameters derived from the time series. In the second experiment, a model is presented which uses only the injection flow and injection pressure profile as input and achieves high coefficients of determination for the prediction of the part weight, despite the absence of mold sensor data and scalar data. It is shown that higher sampling rates of time series results in higher prediction quality of these models. This improves the understanding of the data needed for high quality machine learning models of injection molding processes and enable users to estimate a lower bound for the sample rates of time series for their use cases.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ipp-2022-4258\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ipp-2022-4258","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Time series data for process monitoring in injection molding: a quantitative study of the benefits of a high sampling rate
Abstract Process monitoring systems are playing an increasingly important role in reducing production capacity losses in injection molding. Process monitoring and optimization systems are mostly based on processing data of injection molding machine control systems. These data consist of scalar data and time series. This paper introduces a novel approach to modelling injection molding processes using only time series data and evaluates the quantitative influences of varying sampling times on calculation of integral values and model quality. On the basis of the first experiment, it is shown that the sampling rates of these time series have a large influence on information which can be derived from this data (e.g. injection work). These findings provide an assessment of whether the effort is justified for the respective requirements on the accuracy of the injection work and other parameters derived from the time series. In the second experiment, a model is presented which uses only the injection flow and injection pressure profile as input and achieves high coefficients of determination for the prediction of the part weight, despite the absence of mold sensor data and scalar data. It is shown that higher sampling rates of time series results in higher prediction quality of these models. This improves the understanding of the data needed for high quality machine learning models of injection molding processes and enable users to estimate a lower bound for the sample rates of time series for their use cases.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.