仿射类似物逼近q值逻辑函数对线性流形的限制

IF 0.3 Q4 MATHEMATICS, APPLIED
V. G. Ryabov
{"title":"仿射类似物逼近q值逻辑函数对线性流形的限制","authors":"V. G. Ryabov","doi":"10.1515/dma-2021-0037","DOIUrl":null,"url":null,"abstract":"Abstract For a finite q-element field Fq, we established a relation between parameters characterizing the measure of affine approximation of a q-valued logic function and similar parameters for its restrictions to linear manifolds. For q > 2, an analogue of the Parseval identity with respect to these parameters is proved, which implies the meaningful upper estimates qn−1(q − 1) − qn/2−1 and qr−1(q − 1) − qr/2−1, for the nonlinearity of an n-place q-valued logic function and of its restrictions to manifolds of dimension r. Estimates characterizing the distribution of nonlinearity on manifolds of fixed dimension are obtained.","PeriodicalId":11287,"journal":{"name":"Discrete Mathematics and Applications","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Approximation of restrictions of q-valued logic functions to linear manifolds by affine analogues\",\"authors\":\"V. G. Ryabov\",\"doi\":\"10.1515/dma-2021-0037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For a finite q-element field Fq, we established a relation between parameters characterizing the measure of affine approximation of a q-valued logic function and similar parameters for its restrictions to linear manifolds. For q > 2, an analogue of the Parseval identity with respect to these parameters is proved, which implies the meaningful upper estimates qn−1(q − 1) − qn/2−1 and qr−1(q − 1) − qr/2−1, for the nonlinearity of an n-place q-valued logic function and of its restrictions to manifolds of dimension r. Estimates characterizing the distribution of nonlinearity on manifolds of fixed dimension are obtained.\",\"PeriodicalId\":11287,\"journal\":{\"name\":\"Discrete Mathematics and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/dma-2021-0037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/dma-2021-0037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4

摘要

摘要对于有限q元域Fq,建立了表征q值逻辑函数仿射逼近测度的参数与其约束线性流形的类似参数之间的关系。对于q > 2,证明了关于这些参数的Parseval恒等式的一个类比,得到了n位q值逻辑函数的非线性及其对r维流形的限制的有意义的上估计qn−1(q−1)−qn/2−1和qr−1(q−1)−qr/2−1。得到了表征固定维流形上非线性分布的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation of restrictions of q-valued logic functions to linear manifolds by affine analogues
Abstract For a finite q-element field Fq, we established a relation between parameters characterizing the measure of affine approximation of a q-valued logic function and similar parameters for its restrictions to linear manifolds. For q > 2, an analogue of the Parseval identity with respect to these parameters is proved, which implies the meaningful upper estimates qn−1(q − 1) − qn/2−1 and qr−1(q − 1) − qr/2−1, for the nonlinearity of an n-place q-valued logic function and of its restrictions to manifolds of dimension r. Estimates characterizing the distribution of nonlinearity on manifolds of fixed dimension are obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
20.00%
发文量
29
期刊介绍: The aim of this journal is to provide the latest information on the development of discrete mathematics in the former USSR to a world-wide readership. The journal will contain papers from the Russian-language journal Diskretnaya Matematika, the only journal of the Russian Academy of Sciences devoted to this field of mathematics. Discrete Mathematics and Applications will cover various subjects in the fields such as combinatorial analysis, graph theory, functional systems theory, cryptology, coding, probabilistic problems of discrete mathematics, algorithms and their complexity, combinatorial and computational problems of number theory and of algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信