对角线拉姆齐通过有效的准随机

IF 2.3 1区 数学 Q1 MATHEMATICS
A. Sah
{"title":"对角线拉姆齐通过有效的准随机","authors":"A. Sah","doi":"10.1215/00127094-2022-0048","DOIUrl":null,"url":null,"abstract":"We improve the upper bound for diagonal Ramsey numbers to \\[R(k+1,k+1)\\le\\exp(-c(\\log k)^2)\\binom{2k}{k}\\] for $k\\ge 3$. To do so, we build on a quasirandomness and induction framework for Ramsey numbers introduced by Thomason and extended by Conlon, demonstrating optimal \"effective quasirandomness\" results about convergence of graphs. This optimality represents a natural barrier to improvement.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2020-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Diagonal Ramsey via effective quasirandomness\",\"authors\":\"A. Sah\",\"doi\":\"10.1215/00127094-2022-0048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We improve the upper bound for diagonal Ramsey numbers to \\\\[R(k+1,k+1)\\\\le\\\\exp(-c(\\\\log k)^2)\\\\binom{2k}{k}\\\\] for $k\\\\ge 3$. To do so, we build on a quasirandomness and induction framework for Ramsey numbers introduced by Thomason and extended by Conlon, demonstrating optimal \\\"effective quasirandomness\\\" results about convergence of graphs. This optimality represents a natural barrier to improvement.\",\"PeriodicalId\":11447,\"journal\":{\"name\":\"Duke Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2020-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Duke Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00127094-2022-0048\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2022-0048","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 36

摘要

我们将对角线拉姆齐数的上界改进为$k\ge 3$的\[R(k+1,k+1)\le\exp(-c(\log k)^2)\binom{2k}{k}\]。为此,我们建立了由Thomason引入并由Conlon扩展的Ramsey数的准随机和归纳框架,证明了关于图收敛的最优“有效准随机”结果。这种最优性代表了改进的天然障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diagonal Ramsey via effective quasirandomness
We improve the upper bound for diagonal Ramsey numbers to \[R(k+1,k+1)\le\exp(-c(\log k)^2)\binom{2k}{k}\] for $k\ge 3$. To do so, we build on a quasirandomness and induction framework for Ramsey numbers introduced by Thomason and extended by Conlon, demonstrating optimal "effective quasirandomness" results about convergence of graphs. This optimality represents a natural barrier to improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信