交换环的扩展湮灭-理想图

Q4 Mathematics
S. Nithya, G. Elavarasi
{"title":"交换环的扩展湮灭-理想图","authors":"S. Nithya, G. Elavarasi","doi":"10.7151/dmgaa.1390","DOIUrl":null,"url":null,"abstract":"Abstract Let R be a commutative ring with identity. An ideal I of a ring R is called an annihilating-ideal if there exists a nonzero ideal J of R such that IJ = (0) and we use the notation 𝔸(R) for the set of all annihilating-ideals of R. In this paper, we introduce the extended annihilating-ideal graph of R, denoted by 𝔼𝔸𝔾(R). It is the simple graph with vertices 𝔸(R)* = 𝔸(R)\\ {(0)}, and two distinct vertices I and J are adjacent whenever there exist two positive integers n and m such that InJm = (0) with In ≠ (0) and Jm ≠ (0). Here we discuss in detail the diameter and girth of 𝔼𝔸𝔾(R) and investigate the coincidence of 𝔼𝔸𝔾(R) with the annihilating-ideal graph 𝔸𝔾 (R). Moreover we propose open questions in this paper.","PeriodicalId":36816,"journal":{"name":"Discussiones Mathematicae - General Algebra and Applications","volume":"42 1","pages":"279 - 291"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extended Annihilating-Ideal Graph of a Commutative Ring\",\"authors\":\"S. Nithya, G. Elavarasi\",\"doi\":\"10.7151/dmgaa.1390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let R be a commutative ring with identity. An ideal I of a ring R is called an annihilating-ideal if there exists a nonzero ideal J of R such that IJ = (0) and we use the notation 𝔸(R) for the set of all annihilating-ideals of R. In this paper, we introduce the extended annihilating-ideal graph of R, denoted by 𝔼𝔸𝔾(R). It is the simple graph with vertices 𝔸(R)* = 𝔸(R)\\\\ {(0)}, and two distinct vertices I and J are adjacent whenever there exist two positive integers n and m such that InJm = (0) with In ≠ (0) and Jm ≠ (0). Here we discuss in detail the diameter and girth of 𝔼𝔸𝔾(R) and investigate the coincidence of 𝔼𝔸𝔾(R) with the annihilating-ideal graph 𝔸𝔾 (R). Moreover we propose open questions in this paper.\",\"PeriodicalId\":36816,\"journal\":{\"name\":\"Discussiones Mathematicae - General Algebra and Applications\",\"volume\":\"42 1\",\"pages\":\"279 - 291\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discussiones Mathematicae - General Algebra and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7151/dmgaa.1390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussiones Mathematicae - General Algebra and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7151/dmgaa.1390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

设R是一个具有恒等式的交换环。环R的理想I称为湮灭理想,如果存在R的非零理想J,使得IJ=(0),并且我们使用符号𝔸(R) 对于R的所有零化理想的集合。在本文中,我们引入了R的扩展零化理想图,表示为𝔼𝔸𝔾(R) 。这是一个有顶点的简单图𝔸(R) *=𝔸(R) 当存在两个正整数n和m时,两个不同的顶点I和J是相邻的,使得InJm=(0),其中In≠(0)和Jm≠(O)。在这里,我们详细讨论𝔼𝔸𝔾(R) 并调查𝔼𝔸𝔾(R) 具有湮灭理想图𝔸𝔾 (R) 。此外,我们在本文中提出了一些悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extended Annihilating-Ideal Graph of a Commutative Ring
Abstract Let R be a commutative ring with identity. An ideal I of a ring R is called an annihilating-ideal if there exists a nonzero ideal J of R such that IJ = (0) and we use the notation 𝔸(R) for the set of all annihilating-ideals of R. In this paper, we introduce the extended annihilating-ideal graph of R, denoted by 𝔼𝔸𝔾(R). It is the simple graph with vertices 𝔸(R)* = 𝔸(R)\ {(0)}, and two distinct vertices I and J are adjacent whenever there exist two positive integers n and m such that InJm = (0) with In ≠ (0) and Jm ≠ (0). Here we discuss in detail the diameter and girth of 𝔼𝔸𝔾(R) and investigate the coincidence of 𝔼𝔸𝔾(R) with the annihilating-ideal graph 𝔸𝔾 (R). Moreover we propose open questions in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discussiones Mathematicae - General Algebra and Applications
Discussiones Mathematicae - General Algebra and Applications Mathematics-Algebra and Number Theory
CiteScore
0.60
自引率
0.00%
发文量
12
审稿时长
26 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信