正标量曲率和固有作用的等变callias型指标定理

IF 0.5 Q3 MATHEMATICS
Haoyang Guo, P. Hochs, V. Mathai
{"title":"正标量曲率和固有作用的等变callias型指标定理","authors":"Haoyang Guo, P. Hochs, V. Mathai","doi":"10.2140/akt.2021.6.319","DOIUrl":null,"url":null,"abstract":"For a proper action by a locally compact group $G$ on a manifold $M$ with a $G$-equivariant Spin-structure, we obtain obstructions to the existence of complete $G$-invariant Riemannian metrics with uniformly positive scalar curvature. We focus on the case where $M/G$ is noncompact. The obstructions follow from a Callias-type index theorem, and relate to positive scalar curvature near hypersurfaces in $M$. We also deduce some other applications of this index theorem. If $G$ is a connected Lie group, then the obstructions to positive scalar curvature vanish under a mild assumption on the action. In that case, we generalise a construction by Lawson and Yau to obtain complete $G$-invariant Riemannian metrics with uniformly positive scalar curvature, under an equivariant bounded geometry assumption.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Positive scalar curvature and an equivariant Callias-type index theorem for proper actions\",\"authors\":\"Haoyang Guo, P. Hochs, V. Mathai\",\"doi\":\"10.2140/akt.2021.6.319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a proper action by a locally compact group $G$ on a manifold $M$ with a $G$-equivariant Spin-structure, we obtain obstructions to the existence of complete $G$-invariant Riemannian metrics with uniformly positive scalar curvature. We focus on the case where $M/G$ is noncompact. The obstructions follow from a Callias-type index theorem, and relate to positive scalar curvature near hypersurfaces in $M$. We also deduce some other applications of this index theorem. If $G$ is a connected Lie group, then the obstructions to positive scalar curvature vanish under a mild assumption on the action. In that case, we generalise a construction by Lawson and Yau to obtain complete $G$-invariant Riemannian metrics with uniformly positive scalar curvature, under an equivariant bounded geometry assumption.\",\"PeriodicalId\":42182,\"journal\":{\"name\":\"Annals of K-Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/akt.2021.6.319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2021.6.319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

对于具有G$-等变自旋结构的流形$M$上的局部紧群$G$的固有作用,我们得到了具有一致正标量曲率的完全$G$-不变黎曼度量存在的障碍。我们关注$M/G$是非紧的情况。这些障碍遵循callias型指标定理,并且与$M$超曲面附近的正标量曲率有关。我们还推导了该指标定理的一些其他应用。如果$G$是连通李群,则在对作用的温和假设下,对正标量曲率的阻碍消失。在这种情况下,我们推广了Lawson和Yau的构造,在等变有界几何假设下获得了均匀正标量曲率的完全$G$不变黎曼度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Positive scalar curvature and an equivariant Callias-type index theorem for proper actions
For a proper action by a locally compact group $G$ on a manifold $M$ with a $G$-equivariant Spin-structure, we obtain obstructions to the existence of complete $G$-invariant Riemannian metrics with uniformly positive scalar curvature. We focus on the case where $M/G$ is noncompact. The obstructions follow from a Callias-type index theorem, and relate to positive scalar curvature near hypersurfaces in $M$. We also deduce some other applications of this index theorem. If $G$ is a connected Lie group, then the obstructions to positive scalar curvature vanish under a mild assumption on the action. In that case, we generalise a construction by Lawson and Yau to obtain complete $G$-invariant Riemannian metrics with uniformly positive scalar curvature, under an equivariant bounded geometry assumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of K-Theory
Annals of K-Theory MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信