Vincent Harelimana, Yuan Jun Ping, Zhun Gao, Salomon K. A. Umuhuza
{"title":"研究石柱在极软粘土中的性能——一个案例研究","authors":"Vincent Harelimana, Yuan Jun Ping, Zhun Gao, Salomon K. A. Umuhuza","doi":"10.1002/tal.1978","DOIUrl":null,"url":null,"abstract":"Stone columns are used to improve soft soils; however, they fail through bulging, punching, and lateral expansion when the soil is extremely soft. The present study investigated the performance of stone columns in an extremely soft clay (ESC) through the addition of the appropriate geosynthetic materials. Field test was conducted for the foremost purpose of obtaining the optimal spacing between the consecutive stone columns and therefore prevents the failures of stone columns in ESC soils. The study further examined the failure modes of stone columns for the case of ESC soils. The computer programming software FLAC 3D was used for modeling and simulation, while Auto CAD was used to draw needed geometries of the case study. The results revealed that the full encasement of the stone column with suitable geogrids, optimal spacing, and proper design of cushion will enable the efficient use of stone columns as a composite foundation in ESC. The considered appropriate thickness of the cushion was found to be 30 cm, and this cushion helps the embedded soft clay soils to work together with the installed encased stone columns in ESC soils. The center‐to‐center (optimal) spacing between two consecutive stone columns showed optimal performance at distance S ≤ 5d of the diameter of the stone column. These findings show that stone column encased with suitable geogrids and optimal spacing will improve the bearing capacity, reduce settlement, and decrease the lateral deflection as well as hoop strain of the foundation.","PeriodicalId":49470,"journal":{"name":"Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the performance of stone columns in an extremely soft clay—A case study\",\"authors\":\"Vincent Harelimana, Yuan Jun Ping, Zhun Gao, Salomon K. A. Umuhuza\",\"doi\":\"10.1002/tal.1978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stone columns are used to improve soft soils; however, they fail through bulging, punching, and lateral expansion when the soil is extremely soft. The present study investigated the performance of stone columns in an extremely soft clay (ESC) through the addition of the appropriate geosynthetic materials. Field test was conducted for the foremost purpose of obtaining the optimal spacing between the consecutive stone columns and therefore prevents the failures of stone columns in ESC soils. The study further examined the failure modes of stone columns for the case of ESC soils. The computer programming software FLAC 3D was used for modeling and simulation, while Auto CAD was used to draw needed geometries of the case study. The results revealed that the full encasement of the stone column with suitable geogrids, optimal spacing, and proper design of cushion will enable the efficient use of stone columns as a composite foundation in ESC. The considered appropriate thickness of the cushion was found to be 30 cm, and this cushion helps the embedded soft clay soils to work together with the installed encased stone columns in ESC soils. The center‐to‐center (optimal) spacing between two consecutive stone columns showed optimal performance at distance S ≤ 5d of the diameter of the stone column. These findings show that stone column encased with suitable geogrids and optimal spacing will improve the bearing capacity, reduce settlement, and decrease the lateral deflection as well as hoop strain of the foundation.\",\"PeriodicalId\":49470,\"journal\":{\"name\":\"Structural Design of Tall and Special Buildings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Design of Tall and Special Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/tal.1978\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Design of Tall and Special Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/tal.1978","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Investigating the performance of stone columns in an extremely soft clay—A case study
Stone columns are used to improve soft soils; however, they fail through bulging, punching, and lateral expansion when the soil is extremely soft. The present study investigated the performance of stone columns in an extremely soft clay (ESC) through the addition of the appropriate geosynthetic materials. Field test was conducted for the foremost purpose of obtaining the optimal spacing between the consecutive stone columns and therefore prevents the failures of stone columns in ESC soils. The study further examined the failure modes of stone columns for the case of ESC soils. The computer programming software FLAC 3D was used for modeling and simulation, while Auto CAD was used to draw needed geometries of the case study. The results revealed that the full encasement of the stone column with suitable geogrids, optimal spacing, and proper design of cushion will enable the efficient use of stone columns as a composite foundation in ESC. The considered appropriate thickness of the cushion was found to be 30 cm, and this cushion helps the embedded soft clay soils to work together with the installed encased stone columns in ESC soils. The center‐to‐center (optimal) spacing between two consecutive stone columns showed optimal performance at distance S ≤ 5d of the diameter of the stone column. These findings show that stone column encased with suitable geogrids and optimal spacing will improve the bearing capacity, reduce settlement, and decrease the lateral deflection as well as hoop strain of the foundation.
期刊介绍:
The Structural Design of Tall and Special Buildings provides structural engineers and contractors with a detailed written presentation of innovative structural engineering and construction practices for tall and special buildings. It also presents applied research on new materials or analysis methods that can directly benefit structural engineers involved in the design of tall and special buildings. The editor''s policy is to maintain a reasonable balance between papers from design engineers and from research workers so that the Journal will be useful to both groups. The problems in this field and their solutions are international in character and require a knowledge of several traditional disciplines and the Journal will reflect this.
The main subject of the Journal is the structural design and construction of tall and special buildings. The basic definition of a tall building, in the context of the Journal audience, is a structure that is equal to or greater than 50 meters (165 feet) in height, or 14 stories or greater. A special building is one with unique architectural or structural characteristics.
However, manuscripts dealing with chimneys, water towers, silos, cooling towers, and pools will generally not be considered for review. The journal will present papers on new innovative structural systems, materials and methods of analysis.