采用对称和不对称槽形梁的钢-混凝土组合梁试验研究

IF 1.1 Q4 MECHANICS
H. W. Al-Thabhawee
{"title":"采用对称和不对称槽形梁的钢-混凝土组合梁试验研究","authors":"H. W. Al-Thabhawee","doi":"10.1515/cls-2022-0019","DOIUrl":null,"url":null,"abstract":"Abstract This study aims to investigate the behavior of concrete slabs acting compositely with symmetrical and asymmetrical castellated beams. Stud connectors are used to connect the concrete slab and steel section. The use of castellated steel beams to build up composite steel-concrete beams is now common practice in building construction. Five simply supported composite beams were examined under two-point loading. Two specimens built up from standard steel beams were used as control specimens and three specimens were built up from castellated steel beams. One of these specimens was built up using a castellated steel beam with an asymmetrical cross-section fabricated from two different standard sections (IPE120/HEA120). The concrete slab of all composite specimens had the same dimensions and properties. The experimental results showed that strength and rigidity were considerably greater for composite castellated steel beams compared to composite beams built up from the parent sections. The ultimate load capacity of a composite castellated beam fabricated from an IPE120 section was 46% greater than that of a composite beam built up using the parent beam, and the ultimate load capacity of a composite castellated beam fabricated from a wide-flanged HEA120 section resulted in an increase of 21% over the parent beam control specimen. The ultimate load capacity of the composite specimen built up using the asymmetrical castellated beam (IPE120/HEA120) achieved increases of 69% and 12%, respectively, compared to the control specimens built up from standard sections.","PeriodicalId":44435,"journal":{"name":"Curved and Layered Structures","volume":"9 1","pages":"227 - 235"},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation of composite steel–concrete beams using symmetrical and asymmetrical castellated beams\",\"authors\":\"H. W. Al-Thabhawee\",\"doi\":\"10.1515/cls-2022-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study aims to investigate the behavior of concrete slabs acting compositely with symmetrical and asymmetrical castellated beams. Stud connectors are used to connect the concrete slab and steel section. The use of castellated steel beams to build up composite steel-concrete beams is now common practice in building construction. Five simply supported composite beams were examined under two-point loading. Two specimens built up from standard steel beams were used as control specimens and three specimens were built up from castellated steel beams. One of these specimens was built up using a castellated steel beam with an asymmetrical cross-section fabricated from two different standard sections (IPE120/HEA120). The concrete slab of all composite specimens had the same dimensions and properties. The experimental results showed that strength and rigidity were considerably greater for composite castellated steel beams compared to composite beams built up from the parent sections. The ultimate load capacity of a composite castellated beam fabricated from an IPE120 section was 46% greater than that of a composite beam built up using the parent beam, and the ultimate load capacity of a composite castellated beam fabricated from a wide-flanged HEA120 section resulted in an increase of 21% over the parent beam control specimen. The ultimate load capacity of the composite specimen built up using the asymmetrical castellated beam (IPE120/HEA120) achieved increases of 69% and 12%, respectively, compared to the control specimens built up from standard sections.\",\"PeriodicalId\":44435,\"journal\":{\"name\":\"Curved and Layered Structures\",\"volume\":\"9 1\",\"pages\":\"227 - 235\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Curved and Layered Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cls-2022-0019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Curved and Layered Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cls-2022-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要:本研究旨在探讨混凝土板与对称和不对称城堡梁共同作用的性能。螺栓连接件用于连接混凝土板和钢截面。目前,在建筑施工中,使用连体钢梁来构建钢-混凝土组合梁是一种常见的做法。研究了5根简支组合梁在两点荷载作用下的受力情况。2个标准钢梁试件作为对照试件,3个柱形钢梁试件作为对照试件。其中一个样品是用两个不同的标准截面(IPE120/HEA120)制成的具有不对称截面的城堡形钢梁建造的。各组合试件的混凝土板具有相同的尺寸和性能。试验结果表明,与母截面组合梁相比,组合梁的强度和刚度都有显著提高。IPE120截面复合梁的极限承载能力比母梁高46%,宽缘HEA120截面复合梁的极限承载能力比母梁控制试件高21%。采用不对称柱形梁(IPE120/HEA120)构建的复合试件的极限承载能力比采用标准截面构建的对照试件分别提高了69%和12%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental investigation of composite steel–concrete beams using symmetrical and asymmetrical castellated beams
Abstract This study aims to investigate the behavior of concrete slabs acting compositely with symmetrical and asymmetrical castellated beams. Stud connectors are used to connect the concrete slab and steel section. The use of castellated steel beams to build up composite steel-concrete beams is now common practice in building construction. Five simply supported composite beams were examined under two-point loading. Two specimens built up from standard steel beams were used as control specimens and three specimens were built up from castellated steel beams. One of these specimens was built up using a castellated steel beam with an asymmetrical cross-section fabricated from two different standard sections (IPE120/HEA120). The concrete slab of all composite specimens had the same dimensions and properties. The experimental results showed that strength and rigidity were considerably greater for composite castellated steel beams compared to composite beams built up from the parent sections. The ultimate load capacity of a composite castellated beam fabricated from an IPE120 section was 46% greater than that of a composite beam built up using the parent beam, and the ultimate load capacity of a composite castellated beam fabricated from a wide-flanged HEA120 section resulted in an increase of 21% over the parent beam control specimen. The ultimate load capacity of the composite specimen built up using the asymmetrical castellated beam (IPE120/HEA120) achieved increases of 69% and 12%, respectively, compared to the control specimens built up from standard sections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
13.30%
发文量
25
审稿时长
14 weeks
期刊介绍: The aim of Curved and Layered Structures is to become a premier source of knowledge and a worldwide-recognized platform of research and knowledge exchange for scientists of different disciplinary origins and backgrounds (e.g., civil, mechanical, marine, aerospace engineers and architects). The journal publishes research papers from a broad range of topics and approaches including structural mechanics, computational mechanics, engineering structures, architectural design, wind engineering, aerospace engineering, naval engineering, structural stability, structural dynamics, structural stability/reliability, experimental modeling and smart structures. Therefore, the Journal accepts both theoretical and applied contributions in all subfields of structural mechanics as long as they contribute in a broad sense to the core theme.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信