对数改进幂加权birman - hardy - rellich型不等式中常数的最优性

IF 0.5 Q3 MATHEMATICS
F. Gesztesy, Isaac Michael, M. Pang
{"title":"对数改进幂加权birman - hardy - rellich型不等式中常数的最优性","authors":"F. Gesztesy, Isaac Michael, M. Pang","doi":"10.4067/s0719-06462022000100115","DOIUrl":null,"url":null,"abstract":". The principal aim of this paper is to establish the optimality (i.e., sharpness) of the constants A ( m,α ) and B ( m,α ), m ∈ N , α ∈ R , of the form in the power-weighted Birman–Hardy–Rellich-type integral inequalities with logarithmic refinement terms recently proved in [41], namely, ˆ where sharpness is meant in the sense that A ( m,α ) as well as the N constants B ( m,α ) appearing in this inequality are optimal. Here the iterated logarithms are given by )) , j ∈ N , and the iterated exponentials are defined via e 0 = 0 , e j +1 = e e j , j ∈ N 0 = N ∪ { 0 } . Moreover, we prove the analogous sequence of inequalities on the exterior interval ( r, ∞ ) for f ∈ C ∞ 0 (( r, ∞ )), r ∈ (0 , ∞ ).","PeriodicalId":36416,"journal":{"name":"Cubo","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimality of constants in power-weighted Birman-Hardy-Rellich-Type inequalities with logarithmic refinements\",\"authors\":\"F. Gesztesy, Isaac Michael, M. Pang\",\"doi\":\"10.4067/s0719-06462022000100115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". The principal aim of this paper is to establish the optimality (i.e., sharpness) of the constants A ( m,α ) and B ( m,α ), m ∈ N , α ∈ R , of the form in the power-weighted Birman–Hardy–Rellich-type integral inequalities with logarithmic refinement terms recently proved in [41], namely, ˆ where sharpness is meant in the sense that A ( m,α ) as well as the N constants B ( m,α ) appearing in this inequality are optimal. Here the iterated logarithms are given by )) , j ∈ N , and the iterated exponentials are defined via e 0 = 0 , e j +1 = e e j , j ∈ N 0 = N ∪ { 0 } . Moreover, we prove the analogous sequence of inequalities on the exterior interval ( r, ∞ ) for f ∈ C ∞ 0 (( r, ∞ )), r ∈ (0 , ∞ ).\",\"PeriodicalId\":36416,\"journal\":{\"name\":\"Cubo\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cubo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4067/s0719-06462022000100115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4067/s0719-06462022000100115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文的主要目的是建立最近在[41]中证明的具有对数约束项的幂加权Birman–Hardy–Rellich型积分不等式形式的常数A(m,α)和B(m,A),m∈N,α∈R的最优性(即锐度),即,其中锐度是指A(m,α)以及出现在该不等式中的N个常数B(m,A)是最优的。这里的迭代对数由)给出,j∈N,迭代指数通过e0=0,ej+1=ej,j∈N 0=NŞ{0}定义。此外,我们还证明了f∈C∞0((r,∞)),r∈(0,∞)的外区间(r,H_∞)上的类似不等式序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimality of constants in power-weighted Birman-Hardy-Rellich-Type inequalities with logarithmic refinements
. The principal aim of this paper is to establish the optimality (i.e., sharpness) of the constants A ( m,α ) and B ( m,α ), m ∈ N , α ∈ R , of the form in the power-weighted Birman–Hardy–Rellich-type integral inequalities with logarithmic refinement terms recently proved in [41], namely, ˆ where sharpness is meant in the sense that A ( m,α ) as well as the N constants B ( m,α ) appearing in this inequality are optimal. Here the iterated logarithms are given by )) , j ∈ N , and the iterated exponentials are defined via e 0 = 0 , e j +1 = e e j , j ∈ N 0 = N ∪ { 0 } . Moreover, we prove the analogous sequence of inequalities on the exterior interval ( r, ∞ ) for f ∈ C ∞ 0 (( r, ∞ )), r ∈ (0 , ∞ ).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cubo
Cubo Mathematics-Logic
CiteScore
1.20
自引率
0.00%
发文量
22
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信