{"title":"在二级子超模块上","authors":"F. Farzalipour, P. Ghiasvand","doi":"10.22124/JART.2021.18981.1256","DOIUrl":null,"url":null,"abstract":"Let $R$ be a Krasner hyperring and $M$ be an $R$- hypermodule. Let $psi: S^{h}(M)rightarrow S^{h}(M)cup {emptyset}$ be a function, where $S^{h}(M)$ denote the set of all subhypermodules of $M$. In the first part of this paper, we introduce the concept of a secondary hypermodule over a Krasner hyperring. A non-zero hypermodule $M$ over a Krasner hyperring $R$ is called secondary if for every $rin R$, $rM=M$ or $r^{n}M=0$ for some positive integer $n$. Then we investigate some basic properties of secondary hypermodules. Second, we introduce the notion of $psi$-secondary subhypermodules of an $R$-hypermodule and we obtain some properties of such subhypermodules.","PeriodicalId":52302,"journal":{"name":"Journal of Algebra and Related Topics","volume":"9 1","pages":"143-158"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On secondary subhypermodules\",\"authors\":\"F. Farzalipour, P. Ghiasvand\",\"doi\":\"10.22124/JART.2021.18981.1256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $R$ be a Krasner hyperring and $M$ be an $R$- hypermodule. Let $psi: S^{h}(M)rightarrow S^{h}(M)cup {emptyset}$ be a function, where $S^{h}(M)$ denote the set of all subhypermodules of $M$. In the first part of this paper, we introduce the concept of a secondary hypermodule over a Krasner hyperring. A non-zero hypermodule $M$ over a Krasner hyperring $R$ is called secondary if for every $rin R$, $rM=M$ or $r^{n}M=0$ for some positive integer $n$. Then we investigate some basic properties of secondary hypermodules. Second, we introduce the notion of $psi$-secondary subhypermodules of an $R$-hypermodule and we obtain some properties of such subhypermodules.\",\"PeriodicalId\":52302,\"journal\":{\"name\":\"Journal of Algebra and Related Topics\",\"volume\":\"9 1\",\"pages\":\"143-158\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra and Related Topics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22124/JART.2021.18981.1256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Related Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22124/JART.2021.18981.1256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Let $R$ be a Krasner hyperring and $M$ be an $R$- hypermodule. Let $psi: S^{h}(M)rightarrow S^{h}(M)cup {emptyset}$ be a function, where $S^{h}(M)$ denote the set of all subhypermodules of $M$. In the first part of this paper, we introduce the concept of a secondary hypermodule over a Krasner hyperring. A non-zero hypermodule $M$ over a Krasner hyperring $R$ is called secondary if for every $rin R$, $rM=M$ or $r^{n}M=0$ for some positive integer $n$. Then we investigate some basic properties of secondary hypermodules. Second, we introduce the notion of $psi$-secondary subhypermodules of an $R$-hypermodule and we obtain some properties of such subhypermodules.