自主规划弧焊机器人系统的数字孪生实现

Xuewu Wang;Yi Hua;Jin Gao;Zongjie Lin;Rui Yu
{"title":"自主规划弧焊机器人系统的数字孪生实现","authors":"Xuewu Wang;Yi Hua;Jin Gao;Zongjie Lin;Rui Yu","doi":"10.23919/CSMS.2023.0013","DOIUrl":null,"url":null,"abstract":"Industrial robots are currently applied for ship sub-assembly welding to replace welding workers because of the intelligent production and cost savings. In order to improve the efficiency of the robot system, a digital twin system of welding path planning for the arc welding robot in ship sub-assembly welding is proposed in this manuscript to achieve autonomous planning and generation of the welding path. First, a five-dimensional digital twin model of the dual arc welding robot system is constructed. Then, the system kinematics analysis and calibration are studied for communication realization between the virtual and the actual system. Besides, a topology consisting of three bounding volume hierarchies (BVH) trees is proposed to construct digital twin virtual entities in this system. Based on this topology, algorithms for welding seam extraction and collision detection are presented. Finally, the genetic algorithm and the RRT-Connect algorithm combined with region partitioning (RRT-Connect-RP) are applied for the welding sequence global planning and local jump path planning, respectively. The digital twin system and its path planning application are tested in the actual application scenario. The results show that the system can not only simulate the actual welding operation of the arc welding robot but also realize path planning and real-time control of the robot.","PeriodicalId":65786,"journal":{"name":"复杂系统建模与仿真(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9420428/10206014/10206020.pdf","citationCount":"0","resultStr":"{\"title\":\"Digital Twin Implementation of Autonomous Planning Arc Welding Robot System\",\"authors\":\"Xuewu Wang;Yi Hua;Jin Gao;Zongjie Lin;Rui Yu\",\"doi\":\"10.23919/CSMS.2023.0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Industrial robots are currently applied for ship sub-assembly welding to replace welding workers because of the intelligent production and cost savings. In order to improve the efficiency of the robot system, a digital twin system of welding path planning for the arc welding robot in ship sub-assembly welding is proposed in this manuscript to achieve autonomous planning and generation of the welding path. First, a five-dimensional digital twin model of the dual arc welding robot system is constructed. Then, the system kinematics analysis and calibration are studied for communication realization between the virtual and the actual system. Besides, a topology consisting of three bounding volume hierarchies (BVH) trees is proposed to construct digital twin virtual entities in this system. Based on this topology, algorithms for welding seam extraction and collision detection are presented. Finally, the genetic algorithm and the RRT-Connect algorithm combined with region partitioning (RRT-Connect-RP) are applied for the welding sequence global planning and local jump path planning, respectively. The digital twin system and its path planning application are tested in the actual application scenario. The results show that the system can not only simulate the actual welding operation of the arc welding robot but also realize path planning and real-time control of the robot.\",\"PeriodicalId\":65786,\"journal\":{\"name\":\"复杂系统建模与仿真(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/9420428/10206014/10206020.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"复杂系统建模与仿真(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10206020/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"复杂系统建模与仿真(英文)","FirstCategoryId":"1089","ListUrlMain":"https://ieeexplore.ieee.org/document/10206020/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于生产智能化和节约成本,工业机器人目前被应用于船舶分装配焊接,以取代焊接工人。为了提高机器人系统的工作效率,本文提出了一种船舶分装配弧焊机器人焊接路径规划数字孪生系统,实现了焊接路径的自主规划和生成。首先,建立了双弧焊机器人系统的五维数字孪生模型。然后,研究了系统的运动学分析和标定,实现了虚拟系统与实际系统之间的通信。此外,提出了一种由三个边界体层次(BVH)树组成的拓扑结构来构建该系统中的数字孪生虚拟实体。在此基础上,提出了焊缝提取和碰撞检测算法。最后,采用遗传算法和结合区域划分的RRT-Connect算法(RRT-Connect- rp)分别对焊接序列进行全局规划和局部跳转路径规划。在实际应用场景中对数字孪生系统及其路径规划应用进行了测试。结果表明,该系统不仅可以模拟弧焊机器人的实际焊接操作,还可以实现弧焊机器人的路径规划和实时控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Digital Twin Implementation of Autonomous Planning Arc Welding Robot System
Industrial robots are currently applied for ship sub-assembly welding to replace welding workers because of the intelligent production and cost savings. In order to improve the efficiency of the robot system, a digital twin system of welding path planning for the arc welding robot in ship sub-assembly welding is proposed in this manuscript to achieve autonomous planning and generation of the welding path. First, a five-dimensional digital twin model of the dual arc welding robot system is constructed. Then, the system kinematics analysis and calibration are studied for communication realization between the virtual and the actual system. Besides, a topology consisting of three bounding volume hierarchies (BVH) trees is proposed to construct digital twin virtual entities in this system. Based on this topology, algorithms for welding seam extraction and collision detection are presented. Finally, the genetic algorithm and the RRT-Connect algorithm combined with region partitioning (RRT-Connect-RP) are applied for the welding sequence global planning and local jump path planning, respectively. The digital twin system and its path planning application are tested in the actual application scenario. The results show that the system can not only simulate the actual welding operation of the arc welding robot but also realize path planning and real-time control of the robot.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信