{"title":"唐,李和蒂克尔(2022)对“人口死亡率建模的埃尔米特样条方法”的一些评论","authors":"S. Richards","doi":"10.1017/s174849952300012x","DOIUrl":null,"url":null,"abstract":"\n Tang et al. (2022) propose a new class of models for stochastic mortality modelling using Hermite splines. There are four useful features of this class that are worth emphasising. First, for single-sex datasets, this new class of projection models can be fitted as a generalised linear model. Second, these models can automatically extrapolate mortality rates to ages above the maximum age of the data set. Third, simpler sub-variants of the models exist for forecasting when one of the variables lacks a clear drift. Finally, a minor reparameterisation increases the quality of long-range forecasts of period mortality.","PeriodicalId":44135,"journal":{"name":"Annals of Actuarial Science","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some comments on “A Hermite spline approach for modelling population mortality” by Tang, Li & Tickle (2022)\",\"authors\":\"S. Richards\",\"doi\":\"10.1017/s174849952300012x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Tang et al. (2022) propose a new class of models for stochastic mortality modelling using Hermite splines. There are four useful features of this class that are worth emphasising. First, for single-sex datasets, this new class of projection models can be fitted as a generalised linear model. Second, these models can automatically extrapolate mortality rates to ages above the maximum age of the data set. Third, simpler sub-variants of the models exist for forecasting when one of the variables lacks a clear drift. Finally, a minor reparameterisation increases the quality of long-range forecasts of period mortality.\",\"PeriodicalId\":44135,\"journal\":{\"name\":\"Annals of Actuarial Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Actuarial Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s174849952300012x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Actuarial Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s174849952300012x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Some comments on “A Hermite spline approach for modelling population mortality” by Tang, Li & Tickle (2022)
Tang et al. (2022) propose a new class of models for stochastic mortality modelling using Hermite splines. There are four useful features of this class that are worth emphasising. First, for single-sex datasets, this new class of projection models can be fitted as a generalised linear model. Second, these models can automatically extrapolate mortality rates to ages above the maximum age of the data set. Third, simpler sub-variants of the models exist for forecasting when one of the variables lacks a clear drift. Finally, a minor reparameterisation increases the quality of long-range forecasts of period mortality.