伪anosov映射类的哈密顿流

IF 1.1 3区 数学 Q1 MATHEMATICS
James Farre
{"title":"伪anosov映射类的哈密顿流","authors":"James Farre","doi":"10.4171/cmh/551","DOIUrl":null,"url":null,"abstract":"For a given pseudo-Anosov homeomorphism $\\varphi$ of a closed surface $S$, the action of $\\varphi$ on the Teichm\\\"uller space $\\mathcal T(S)$ preserves the Weil-Petersson symplectic form. We give explicit formulae for two invariant functions $\\mathcal T(S)\\to \\mathbb R$ whose symplectic gradients generate autonomous Hamiltonian flows that coincide with the action of $\\varphi$ at time one. We compute the Poisson bracket between these two functions. This amounts to computing the variation of length of a H\\\"older cocyle on one lamination along a shear vector field defined by another. For a measurably generic set of laminations, we prove that the variation of length is expressed as the cosine of the angle between the two laminations integrated against the product H\\\"older distribution, generalizing a result of Kerckhoff. We also obtain rates of convergence for the supports of germs of differentiable paths of measured laminations in the Hausdorff metric on a hyperbolic surface, which may be of independent interest.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hamiltonian flows for pseudo-Anosov mapping classes\",\"authors\":\"James Farre\",\"doi\":\"10.4171/cmh/551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a given pseudo-Anosov homeomorphism $\\\\varphi$ of a closed surface $S$, the action of $\\\\varphi$ on the Teichm\\\\\\\"uller space $\\\\mathcal T(S)$ preserves the Weil-Petersson symplectic form. We give explicit formulae for two invariant functions $\\\\mathcal T(S)\\\\to \\\\mathbb R$ whose symplectic gradients generate autonomous Hamiltonian flows that coincide with the action of $\\\\varphi$ at time one. We compute the Poisson bracket between these two functions. This amounts to computing the variation of length of a H\\\\\\\"older cocyle on one lamination along a shear vector field defined by another. For a measurably generic set of laminations, we prove that the variation of length is expressed as the cosine of the angle between the two laminations integrated against the product H\\\\\\\"older distribution, generalizing a result of Kerckhoff. We also obtain rates of convergence for the supports of germs of differentiable paths of measured laminations in the Hausdorff metric on a hyperbolic surface, which may be of independent interest.\",\"PeriodicalId\":50664,\"journal\":{\"name\":\"Commentarii Mathematici Helvetici\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Commentarii Mathematici Helvetici\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/cmh/551\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/cmh/551","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于一个给定的闭曲面$S$的伪ananosov同胚$\varphi$, $\varphi$在Teichm\ uller空间$\数学T(S)$上的作用保持了Weil-Petersson辛形式。我们给出了两个不变函数$\mathcal T(S)\到$ mathbb R$的显式公式,它们的辛梯度产生与$\varphi$在时刻1的作用一致的自治哈密顿流。我们计算这两个函数之间的泊松括号。这相当于计算一个层合层上沿另一个层合层定义的剪切矢量场的H\ ' old共环长度的变化。对于可测量的一般层合集,我们证明了长度的变化表示为两个层合之间的夹角对乘积H\ \ old分布的余弦,推广了Kerckhoff的结果。我们还得到了在双曲曲面上的Hausdorff度量中测量薄片的可微路径的芽的支点的收敛速率,这可能是独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hamiltonian flows for pseudo-Anosov mapping classes
For a given pseudo-Anosov homeomorphism $\varphi$ of a closed surface $S$, the action of $\varphi$ on the Teichm\"uller space $\mathcal T(S)$ preserves the Weil-Petersson symplectic form. We give explicit formulae for two invariant functions $\mathcal T(S)\to \mathbb R$ whose symplectic gradients generate autonomous Hamiltonian flows that coincide with the action of $\varphi$ at time one. We compute the Poisson bracket between these two functions. This amounts to computing the variation of length of a H\"older cocyle on one lamination along a shear vector field defined by another. For a measurably generic set of laminations, we prove that the variation of length is expressed as the cosine of the angle between the two laminations integrated against the product H\"older distribution, generalizing a result of Kerckhoff. We also obtain rates of convergence for the supports of germs of differentiable paths of measured laminations in the Hausdorff metric on a hyperbolic surface, which may be of independent interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals. Commentarii Mathematici Helvetici is covered in: Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信