紧群上左不变拉普拉斯算子关于高斯估计和亚椭圆性的扰动结果

IF 0.4 4区 数学 Q4 MATHEMATICS
Qi Hou, L. Saloff‐Coste
{"title":"紧群上左不变拉普拉斯算子关于高斯估计和亚椭圆性的扰动结果","authors":"Qi Hou, L. Saloff‐Coste","doi":"10.4064/cm8696-8-2022","DOIUrl":null,"url":null,"abstract":"In this paper we study left-invariant Laplacians on compact connected groups that are form-comparable perturbations of bi-invariant Laplacians. Our results show that Gaussian bounds for derivatives of heat kernels enjoyed by certain bi-invariant Laplacians hold for their form-comparable perturbations. We further show that the parabolic operators associated with such left-invariant Laplacians, in particular, with the bi-invariant Laplacians, are hypoelliptic in various senses.","PeriodicalId":49216,"journal":{"name":"Colloquium Mathematicum","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perturbation results concerning Gaussian estimates and hypoellipticity for left-invariant Laplacians on compact groups\",\"authors\":\"Qi Hou, L. Saloff‐Coste\",\"doi\":\"10.4064/cm8696-8-2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study left-invariant Laplacians on compact connected groups that are form-comparable perturbations of bi-invariant Laplacians. Our results show that Gaussian bounds for derivatives of heat kernels enjoyed by certain bi-invariant Laplacians hold for their form-comparable perturbations. We further show that the parabolic operators associated with such left-invariant Laplacians, in particular, with the bi-invariant Laplacians, are hypoelliptic in various senses.\",\"PeriodicalId\":49216,\"journal\":{\"name\":\"Colloquium Mathematicum\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloquium Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/cm8696-8-2022\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloquium Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/cm8696-8-2022","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了紧连通群上的左不变拉普拉斯算子,这些紧连通群是双不变拉普拉斯算子的可比扰动。我们的结果表明,某些双不变拉普拉斯算子所享受的热核导数的高斯界对于其形式可比的扰动是成立的。我们进一步证明了与这种左不变拉普拉斯算子,特别是与双不变拉普拉斯算子相关的抛物算子在各种意义上都是次椭圆的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perturbation results concerning Gaussian estimates and hypoellipticity for left-invariant Laplacians on compact groups
In this paper we study left-invariant Laplacians on compact connected groups that are form-comparable perturbations of bi-invariant Laplacians. Our results show that Gaussian bounds for derivatives of heat kernels enjoyed by certain bi-invariant Laplacians hold for their form-comparable perturbations. We further show that the parabolic operators associated with such left-invariant Laplacians, in particular, with the bi-invariant Laplacians, are hypoelliptic in various senses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Colloquium Mathematicum is a journal devoted to the publication of original papers of moderate length addressed to a broad mathematical audience. It publishes results of original research, interesting new proofs of important theorems and research-expository papers in all fields of pure mathematics. Two issues constitute a volume, and at least four volumes are published each year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信