闵可夫斯基问号函数在特殊点上的迭代导数

Pub Date : 2021-01-01 DOI:10.7169/facm/1966
N. Shulga
{"title":"闵可夫斯基问号函数在特殊点上的迭代导数","authors":"N. Shulga","doi":"10.7169/facm/1966","DOIUrl":null,"url":null,"abstract":"For the Minkowski question mark function ?(x) we consider derivative of the function fn(x) = ?(?(...? } {{ } n times (x))). Apart from obvious cases (rational numbers for example) it is non-trivial to find explicit examples of numbers x for which f ′ n (x) = 0. In this paper we present a set of irrational numbers, such that for every element x0 of this set and for any n ∈ Z+ one has f ′ n (x0) = 0.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the derivative of iterations of the Minkowski question mark function at special points\",\"authors\":\"N. Shulga\",\"doi\":\"10.7169/facm/1966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the Minkowski question mark function ?(x) we consider derivative of the function fn(x) = ?(?(...? } {{ } n times (x))). Apart from obvious cases (rational numbers for example) it is non-trivial to find explicit examples of numbers x for which f ′ n (x) = 0. In this paper we present a set of irrational numbers, such that for every element x0 of this set and for any n ∈ Z+ one has f ′ n (x0) = 0.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7169/facm/1966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/1966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于Minkowski问号函数?(x) 我们考虑函数fn(x)=?的导数?(?(…?}{}n次(x)))。除了明显的情况(例如有理数)之外,找到f′n(x)=0的数字x的显式例子是不平凡的。本文给出了一组无理数,使得该集合的每个元素x0和任何n∈Z+都有f′n(x0)=0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the derivative of iterations of the Minkowski question mark function at special points
For the Minkowski question mark function ?(x) we consider derivative of the function fn(x) = ?(?(...? } {{ } n times (x))). Apart from obvious cases (rational numbers for example) it is non-trivial to find explicit examples of numbers x for which f ′ n (x) = 0. In this paper we present a set of irrational numbers, such that for every element x0 of this set and for any n ∈ Z+ one has f ′ n (x0) = 0.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信