{"title":"闵可夫斯基问号函数在特殊点上的迭代导数","authors":"N. Shulga","doi":"10.7169/facm/1966","DOIUrl":null,"url":null,"abstract":"For the Minkowski question mark function ?(x) we consider derivative of the function fn(x) = ?(?(...? } {{ } n times (x))). Apart from obvious cases (rational numbers for example) it is non-trivial to find explicit examples of numbers x for which f ′ n (x) = 0. In this paper we present a set of irrational numbers, such that for every element x0 of this set and for any n ∈ Z+ one has f ′ n (x0) = 0.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the derivative of iterations of the Minkowski question mark function at special points\",\"authors\":\"N. Shulga\",\"doi\":\"10.7169/facm/1966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the Minkowski question mark function ?(x) we consider derivative of the function fn(x) = ?(?(...? } {{ } n times (x))). Apart from obvious cases (rational numbers for example) it is non-trivial to find explicit examples of numbers x for which f ′ n (x) = 0. In this paper we present a set of irrational numbers, such that for every element x0 of this set and for any n ∈ Z+ one has f ′ n (x0) = 0.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7169/facm/1966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/1966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the derivative of iterations of the Minkowski question mark function at special points
For the Minkowski question mark function ?(x) we consider derivative of the function fn(x) = ?(?(...? } {{ } n times (x))). Apart from obvious cases (rational numbers for example) it is non-trivial to find explicit examples of numbers x for which f ′ n (x) = 0. In this paper we present a set of irrational numbers, such that for every element x0 of this set and for any n ∈ Z+ one has f ′ n (x0) = 0.