{"title":"利用扫描电镜在短时间内评估碳酸盐溶解和沉淀:斯洛文尼亚Postojna洞穴的技术和初步结果","authors":"V. Johnston, A. Košir, Andrea Martín Pérez","doi":"10.3986/ac.v50i2-3.9788","DOIUrl":null,"url":null,"abstract":"Carbonate dissolution and precipitation are important geological processes whose rates often require quantification. In natural settings, these processes may be taking place at a slow rate, and thus, it may not be easily visible which of these processes is occurring. Alternatively, if the effects of precipitation/dissolution are visible, it may not be clear if they are still underway or an artefact of past conditions. Moreover, these two opposing processes may flip states depending on the environmental conditions, such as, on a seasonal basis. Here, we present the technical details and preliminary results of a method using carbonate tablets and Scanning Electron Microscopy (SEM) to evaluate which process (carbonate dissolution or precipitation) is occurring, using as an example, a cave environment. Our method involves making tablets by encasing blocks of carbonate rock into resin and polishing these to form a completely flat and smooth “zero surface”. These tablets are observed under SEM in exactly the same points both before and after exposure to the field environment, using a system of marking lines at specific locations on the resin. Our results show significant differences in the before and after images of the tablet surface after just six weeks in the cave. Furthermore, the use of the insoluble resin zero surface permits a comparison of the starting height with the new dissolved/precipitated surface that can be used to quantitatively estimate the rate of dissolution/precipitation happening at a field location in a relatively short time-frame (weeks/months). This method could be used in numerous natural and industrial settings to identify these processes that can be caused purely geochemically, but also through microbialmediation and physical weathering.","PeriodicalId":50905,"journal":{"name":"Acta Carsologica","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evaluating carbonate dissolution and precipitation in a short time-frame using SEM: techniques and preliminary results from Postojna Cave, Slovenia\",\"authors\":\"V. Johnston, A. Košir, Andrea Martín Pérez\",\"doi\":\"10.3986/ac.v50i2-3.9788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbonate dissolution and precipitation are important geological processes whose rates often require quantification. In natural settings, these processes may be taking place at a slow rate, and thus, it may not be easily visible which of these processes is occurring. Alternatively, if the effects of precipitation/dissolution are visible, it may not be clear if they are still underway or an artefact of past conditions. Moreover, these two opposing processes may flip states depending on the environmental conditions, such as, on a seasonal basis. Here, we present the technical details and preliminary results of a method using carbonate tablets and Scanning Electron Microscopy (SEM) to evaluate which process (carbonate dissolution or precipitation) is occurring, using as an example, a cave environment. Our method involves making tablets by encasing blocks of carbonate rock into resin and polishing these to form a completely flat and smooth “zero surface”. These tablets are observed under SEM in exactly the same points both before and after exposure to the field environment, using a system of marking lines at specific locations on the resin. Our results show significant differences in the before and after images of the tablet surface after just six weeks in the cave. Furthermore, the use of the insoluble resin zero surface permits a comparison of the starting height with the new dissolved/precipitated surface that can be used to quantitatively estimate the rate of dissolution/precipitation happening at a field location in a relatively short time-frame (weeks/months). This method could be used in numerous natural and industrial settings to identify these processes that can be caused purely geochemically, but also through microbialmediation and physical weathering.\",\"PeriodicalId\":50905,\"journal\":{\"name\":\"Acta Carsologica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Carsologica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3986/ac.v50i2-3.9788\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Carsologica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3986/ac.v50i2-3.9788","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Evaluating carbonate dissolution and precipitation in a short time-frame using SEM: techniques and preliminary results from Postojna Cave, Slovenia
Carbonate dissolution and precipitation are important geological processes whose rates often require quantification. In natural settings, these processes may be taking place at a slow rate, and thus, it may not be easily visible which of these processes is occurring. Alternatively, if the effects of precipitation/dissolution are visible, it may not be clear if they are still underway or an artefact of past conditions. Moreover, these two opposing processes may flip states depending on the environmental conditions, such as, on a seasonal basis. Here, we present the technical details and preliminary results of a method using carbonate tablets and Scanning Electron Microscopy (SEM) to evaluate which process (carbonate dissolution or precipitation) is occurring, using as an example, a cave environment. Our method involves making tablets by encasing blocks of carbonate rock into resin and polishing these to form a completely flat and smooth “zero surface”. These tablets are observed under SEM in exactly the same points both before and after exposure to the field environment, using a system of marking lines at specific locations on the resin. Our results show significant differences in the before and after images of the tablet surface after just six weeks in the cave. Furthermore, the use of the insoluble resin zero surface permits a comparison of the starting height with the new dissolved/precipitated surface that can be used to quantitatively estimate the rate of dissolution/precipitation happening at a field location in a relatively short time-frame (weeks/months). This method could be used in numerous natural and industrial settings to identify these processes that can be caused purely geochemically, but also through microbialmediation and physical weathering.
期刊介绍:
Karst areas occupy 10-20 % of ice-free land. Dissolution of rock by natural waters has given rise to specific landscape and underground. Karst surface features and caves have attracted man''s curiosity since the dawn of humanity and have been a focus to scientific studies since more than half of millennia.
Acta Carsologica publishes original research papers and reviews, letters, essays and reports covering topics related to specific of karst areas. These comprise, but are not limited to karst geology, hydrology, and geomorphology, speleology, hydrogeology, biospeleology and history of karst science.