端点流形上的庞卡罗常数

IF 1.5 1区 数学 Q1 MATHEMATICS
A. Grigor’yan, Satoshi Ishiwata, L. Saloff‐Coste
{"title":"端点流形上的庞卡罗常数","authors":"A. Grigor’yan, Satoshi Ishiwata, L. Saloff‐Coste","doi":"10.1112/plms.12522","DOIUrl":null,"url":null,"abstract":"We obtain optimal estimates of the Poincaré constant of central balls on manifolds with finitely many ends. Surprisingly enough, the Poincaré constant is determined by the second largest end. The proof is based on the argument by Kusuoka–Stroock where the heat kernel estimates on the central balls play an essential role. For this purpose, we extend earlier heat kernel estimates obtained by the authors to a larger class of parabolic manifolds with ends.","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Poincaré constant on manifolds with ends\",\"authors\":\"A. Grigor’yan, Satoshi Ishiwata, L. Saloff‐Coste\",\"doi\":\"10.1112/plms.12522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain optimal estimates of the Poincaré constant of central balls on manifolds with finitely many ends. Surprisingly enough, the Poincaré constant is determined by the second largest end. The proof is based on the argument by Kusuoka–Stroock where the heat kernel estimates on the central balls play an essential role. For this purpose, we extend earlier heat kernel estimates obtained by the authors to a larger class of parabolic manifolds with ends.\",\"PeriodicalId\":49667,\"journal\":{\"name\":\"Proceedings of the London Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1112/plms.12522\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/plms.12522","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们得到了具有有限多个末端的流形上中心球的庞加莱常数的最优估计。令人惊讶的是,庞加莱常数是由第二大端决定的。该证明基于Kusuoka–Stroock的论点,其中对中心球的热核估计起着至关重要的作用。为此,我们将作者获得的早期热核估计扩展到一类更大的带端抛物流形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Poincaré constant on manifolds with ends
We obtain optimal estimates of the Poincaré constant of central balls on manifolds with finitely many ends. Surprisingly enough, the Poincaré constant is determined by the second largest end. The proof is based on the argument by Kusuoka–Stroock where the heat kernel estimates on the central balls play an essential role. For this purpose, we extend earlier heat kernel estimates obtained by the authors to a larger class of parabolic manifolds with ends.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers. The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信