相互作用粒子系统方法的最优势函数

IF 0.8 Q3 STATISTICS & PROBABILITY
H. Chraibi, A. Dutfoy, T. Galtier, J. Garnier
{"title":"相互作用粒子系统方法的最优势函数","authors":"H. Chraibi, A. Dutfoy, T. Galtier, J. Garnier","doi":"10.1515/mcma-2021-2086","DOIUrl":null,"url":null,"abstract":"Abstract The assessment of the probability of a rare event with a naive Monte Carlo method is computationally intensive, so faster estimation or variance reduction methods are needed. We focus on one of these methods which is the interacting particle system (IPS) method. The method is not intrusive in the sense that the random Markov system under consideration is simulated with its original distribution, but selection steps are introduced that favor trajectories (particles) with high potential values. An unbiased estimator with reduced variance can then be proposed. The method requires to specify a set of potential functions. The choice of these functions is crucial because it determines the magnitude of the variance reduction. So far, little information was available on how to choose the potential functions. This paper provides the expressions of the optimal potential functions minimizing the asymptotic variance of the estimator of the IPS method and it proposes recommendations for the practical design of the potential functions.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"27 1","pages":"137 - 152"},"PeriodicalIF":0.8000,"publicationDate":"2021-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/mcma-2021-2086","citationCount":"4","resultStr":"{\"title\":\"Optimal potential functions for the interacting particle system method\",\"authors\":\"H. Chraibi, A. Dutfoy, T. Galtier, J. Garnier\",\"doi\":\"10.1515/mcma-2021-2086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The assessment of the probability of a rare event with a naive Monte Carlo method is computationally intensive, so faster estimation or variance reduction methods are needed. We focus on one of these methods which is the interacting particle system (IPS) method. The method is not intrusive in the sense that the random Markov system under consideration is simulated with its original distribution, but selection steps are introduced that favor trajectories (particles) with high potential values. An unbiased estimator with reduced variance can then be proposed. The method requires to specify a set of potential functions. The choice of these functions is crucial because it determines the magnitude of the variance reduction. So far, little information was available on how to choose the potential functions. This paper provides the expressions of the optimal potential functions minimizing the asymptotic variance of the estimator of the IPS method and it proposes recommendations for the practical design of the potential functions.\",\"PeriodicalId\":46576,\"journal\":{\"name\":\"Monte Carlo Methods and Applications\",\"volume\":\"27 1\",\"pages\":\"137 - 152\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/mcma-2021-2086\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monte Carlo Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mcma-2021-2086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2021-2086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4

摘要

摘要利用朴素蒙特卡罗方法评估罕见事件的概率需要大量的计算量,因此需要更快的估计或减少方差的方法。本文重点介绍了其中一种方法,即相互作用粒子系统(IPS)方法。该方法并不具有侵入性,因为所考虑的随机马尔可夫系统是用其原始分布来模拟的,但引入了有利于具有高势值的轨迹(粒子)的选择步骤。然后可以提出一个方差减小的无偏估计量。该方法要求指定一组势函数。这些函数的选择是至关重要的,因为它决定了方差减少的幅度。到目前为止,关于如何选择潜在函数的信息很少。本文给出了使IPS方法估计量渐近方差最小的最优势函数的表达式,并对势函数的实际设计提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal potential functions for the interacting particle system method
Abstract The assessment of the probability of a rare event with a naive Monte Carlo method is computationally intensive, so faster estimation or variance reduction methods are needed. We focus on one of these methods which is the interacting particle system (IPS) method. The method is not intrusive in the sense that the random Markov system under consideration is simulated with its original distribution, but selection steps are introduced that favor trajectories (particles) with high potential values. An unbiased estimator with reduced variance can then be proposed. The method requires to specify a set of potential functions. The choice of these functions is crucial because it determines the magnitude of the variance reduction. So far, little information was available on how to choose the potential functions. This paper provides the expressions of the optimal potential functions minimizing the asymptotic variance of the estimator of the IPS method and it proposes recommendations for the practical design of the potential functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Monte Carlo Methods and Applications
Monte Carlo Methods and Applications STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
22.20%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信