基于度量拉普拉斯算子的随机物体的统计分析

IF 1.9 Q1 MATHEMATICS, APPLIED
Gilles Mordant, A. Munk
{"title":"基于度量拉普拉斯算子的随机物体的统计分析","authors":"Gilles Mordant, A. Munk","doi":"10.1137/22m1491022","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a certain convolutional Laplacian for metric measure spaces and investigate its potential for the statistical analysis of complex objects. The spectrum of that Laplacian serves as a signature of the space under consideration and the eigenvectors provide the principal directions of the shape, its harmonics. These concepts are used to assess the similarity of objects or understand their most important features in a principled way which is illustrated in various examples. Adopting a statistical point of view, we define a mean spectral measure and its empirical counterpart. The corresponding limiting process of interest is derived and statistical applications are discussed.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Statistical Analysis of Random Objects Via Metric Measure Laplacians\",\"authors\":\"Gilles Mordant, A. Munk\",\"doi\":\"10.1137/22m1491022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a certain convolutional Laplacian for metric measure spaces and investigate its potential for the statistical analysis of complex objects. The spectrum of that Laplacian serves as a signature of the space under consideration and the eigenvectors provide the principal directions of the shape, its harmonics. These concepts are used to assess the similarity of objects or understand their most important features in a principled way which is illustrated in various examples. Adopting a statistical point of view, we define a mean spectral measure and its empirical counterpart. The corresponding limiting process of interest is derived and statistical applications are discussed.\",\"PeriodicalId\":74797,\"journal\":{\"name\":\"SIAM journal on mathematics of data science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM journal on mathematics of data science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1491022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1491022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们考虑度量测度空间的某个卷积拉普拉斯算子,并研究它在复杂对象统计分析中的潜力。拉普拉斯算子的频谱是所考虑空间的特征,特征向量提供了形状的主要方向及其谐波。这些概念用于评估对象的相似性或以原则的方式理解其最重要的特征,如各种示例所示。采用统计学的观点,我们定义了一个平均谱测度及其经验对应物。推导了相应的感兴趣的极限过程,并讨论了统计应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical Analysis of Random Objects Via Metric Measure Laplacians
In this paper, we consider a certain convolutional Laplacian for metric measure spaces and investigate its potential for the statistical analysis of complex objects. The spectrum of that Laplacian serves as a signature of the space under consideration and the eigenvectors provide the principal directions of the shape, its harmonics. These concepts are used to assess the similarity of objects or understand their most important features in a principled way which is illustrated in various examples. Adopting a statistical point of view, we define a mean spectral measure and its empirical counterpart. The corresponding limiting process of interest is derived and statistical applications are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信