输入符号上唯一隶属度跃迁的直觉模糊有限自动机中的直觉模糊半群

Q4 Mathematics
K. Jency Priya, T. Rajaretnam
{"title":"输入符号上唯一隶属度跃迁的直觉模糊有限自动机中的直觉模糊半群","authors":"K. Jency Priya, T. Rajaretnam","doi":"10.7151/dmgaa.1397","DOIUrl":null,"url":null,"abstract":"Abstract An intuitionistic fuzzy finite state automaton assigns a membership and nonmembership values in which there is a unique membership transition on an input symbol (IFAUM) is considered. It is proved and illustrated the existence of two different intuitionistic fuzzy monoids F (𝒜) and S𝒜 from an intuitionistic fuzzy transition function of the given IFAUM 𝒜. Also it is proved that F (𝒜) and S𝒜 are anti-isomorphic as monoids.","PeriodicalId":36816,"journal":{"name":"Discussiones Mathematicae - General Algebra and Applications","volume":"42 1","pages":"383 - 394"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intuitionistic Fuzzy Monoids in an Intuitionistic Fuzzy Finite Automaton with Unique Membership Transition on an Input Symbol\",\"authors\":\"K. Jency Priya, T. Rajaretnam\",\"doi\":\"10.7151/dmgaa.1397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract An intuitionistic fuzzy finite state automaton assigns a membership and nonmembership values in which there is a unique membership transition on an input symbol (IFAUM) is considered. It is proved and illustrated the existence of two different intuitionistic fuzzy monoids F (𝒜) and S𝒜 from an intuitionistic fuzzy transition function of the given IFAUM 𝒜. Also it is proved that F (𝒜) and S𝒜 are anti-isomorphic as monoids.\",\"PeriodicalId\":36816,\"journal\":{\"name\":\"Discussiones Mathematicae - General Algebra and Applications\",\"volume\":\"42 1\",\"pages\":\"383 - 394\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discussiones Mathematicae - General Algebra and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7151/dmgaa.1397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussiones Mathematicae - General Algebra and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7151/dmgaa.1397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要考虑了一种直觉模糊有限状态自动机在输入符号(IFAUM)上存在唯一隶属度转换的情况下,赋予隶属度值和非隶属度值。从给定IFAUM的直觉模糊转移函数证明并说明了两个不同的直觉模糊一元群F(置)和S(置)的存在性。并证明了F(置)和S(置)是反同构的幺元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intuitionistic Fuzzy Monoids in an Intuitionistic Fuzzy Finite Automaton with Unique Membership Transition on an Input Symbol
Abstract An intuitionistic fuzzy finite state automaton assigns a membership and nonmembership values in which there is a unique membership transition on an input symbol (IFAUM) is considered. It is proved and illustrated the existence of two different intuitionistic fuzzy monoids F (𝒜) and S𝒜 from an intuitionistic fuzzy transition function of the given IFAUM 𝒜. Also it is proved that F (𝒜) and S𝒜 are anti-isomorphic as monoids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discussiones Mathematicae - General Algebra and Applications
Discussiones Mathematicae - General Algebra and Applications Mathematics-Algebra and Number Theory
CiteScore
0.60
自引率
0.00%
发文量
12
审稿时长
26 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信