钴肟配合物的光催化和电催化析氢

Janina Willkomm, E. Reisner
{"title":"钴肟配合物的光催化和电催化析氢","authors":"Janina Willkomm, E. Reisner","doi":"10.4019/BJSCC.71.18","DOIUrl":null,"url":null,"abstract":"41 in of electro-and photocatalytic integrate materials devices for (light-driven) H 2 evolution. 42–47 the application cobalt oxime complexes as catalysts in such systems reviewed. Converting sunlight into storable chemical energy carriers, such as dihydrogen (H 2 ), through light-driven splitting of water is a widely studied approach to secure future energy supplies and sustainability. Molecular complexes based on inexpensive and earth-abundant 3d transition metals have been extensively explored as catalysts for the reduction of water to H 2 . Among these, cobalt complexes with an oxime functionality ( i.e., cobaloxime and cobalt diimine-dioxime) efficiently reduce protons in pure water with low to moderate overpotentials, and they have been shown to remain active under aerobic conditions. Based on their simple and straightforward synthesis in addition to their excellent electrochemical properties, they are often applied as the first-choice catalyst when testing new materials or introducing new concepts for H 2 evolution. In this review, their basic electrochemical and electrocatalytic properties as well as mechanistic investigations will be summarized, followed by an overview of their application in photocatalysis. Finally, their integration with (nano)materials for (photo)electrocatalytic H 2 evolution is presented and discussed.","PeriodicalId":72479,"journal":{"name":"Bulletin of Japan Society of Coordination Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4019/BJSCC.71.18","citationCount":"8","resultStr":"{\"title\":\"Photo- and electrocatalytic H2 evolution with cobalt oxime complexes\",\"authors\":\"Janina Willkomm, E. Reisner\",\"doi\":\"10.4019/BJSCC.71.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"41 in of electro-and photocatalytic integrate materials devices for (light-driven) H 2 evolution. 42–47 the application cobalt oxime complexes as catalysts in such systems reviewed. Converting sunlight into storable chemical energy carriers, such as dihydrogen (H 2 ), through light-driven splitting of water is a widely studied approach to secure future energy supplies and sustainability. Molecular complexes based on inexpensive and earth-abundant 3d transition metals have been extensively explored as catalysts for the reduction of water to H 2 . Among these, cobalt complexes with an oxime functionality ( i.e., cobaloxime and cobalt diimine-dioxime) efficiently reduce protons in pure water with low to moderate overpotentials, and they have been shown to remain active under aerobic conditions. Based on their simple and straightforward synthesis in addition to their excellent electrochemical properties, they are often applied as the first-choice catalyst when testing new materials or introducing new concepts for H 2 evolution. In this review, their basic electrochemical and electrocatalytic properties as well as mechanistic investigations will be summarized, followed by an overview of their application in photocatalysis. Finally, their integration with (nano)materials for (photo)electrocatalytic H 2 evolution is presented and discussed.\",\"PeriodicalId\":72479,\"journal\":{\"name\":\"Bulletin of Japan Society of Coordination Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4019/BJSCC.71.18\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Japan Society of Coordination Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4019/BJSCC.71.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Japan Society of Coordination Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4019/BJSCC.71.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

41英寸的用于(光驱动)H2进化的电和光催化集成材料器件。42-47综述了钴肟络合物作为催化剂在此类系统中的应用。通过光驱动的水分解,将阳光转化为可储存的化学能量载体,如二氢(H2),是一种被广泛研究的确保未来能源供应和可持续性的方法。基于廉价且富含地球的三维过渡金属的分子配合物已被广泛探索作为将水还原为H2的催化剂。其中,具有肟官能团的钴络合物(即钴肟和钴二亚胺二肟)以低至中等过电位有效地还原纯水中的质子,并且它们已被证明在需氧条件下保持活性。基于它们简单直接的合成以及优异的电化学性能,它们通常被用作测试新材料或引入H2进化新概念时的首选催化剂。在这篇综述中,将总结它们的基本电化学和电催化性能以及机理研究,然后概述它们在光催化中的应用。最后,介绍并讨论了它们与(纳米)材料的结合,用于(光)电催化H2的析出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photo- and electrocatalytic H2 evolution with cobalt oxime complexes
41 in of electro-and photocatalytic integrate materials devices for (light-driven) H 2 evolution. 42–47 the application cobalt oxime complexes as catalysts in such systems reviewed. Converting sunlight into storable chemical energy carriers, such as dihydrogen (H 2 ), through light-driven splitting of water is a widely studied approach to secure future energy supplies and sustainability. Molecular complexes based on inexpensive and earth-abundant 3d transition metals have been extensively explored as catalysts for the reduction of water to H 2 . Among these, cobalt complexes with an oxime functionality ( i.e., cobaloxime and cobalt diimine-dioxime) efficiently reduce protons in pure water with low to moderate overpotentials, and they have been shown to remain active under aerobic conditions. Based on their simple and straightforward synthesis in addition to their excellent electrochemical properties, they are often applied as the first-choice catalyst when testing new materials or introducing new concepts for H 2 evolution. In this review, their basic electrochemical and electrocatalytic properties as well as mechanistic investigations will be summarized, followed by an overview of their application in photocatalysis. Finally, their integration with (nano)materials for (photo)electrocatalytic H 2 evolution is presented and discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信