{"title":"求解序列选择问题的统一方法","authors":"A. Goldenshluger, Y. Malinovsky, A. Zeevi","doi":"10.1214/19-ps333","DOIUrl":null,"url":null,"abstract":"In this paper we develop a unified approach for solving a wide class of sequential selection problems. This class includes, but is not limited to, selection problems with no-information, rank-dependent rewards, and considers both fixed as well as random problem horizons. The proposed framework is based on a reduction of the original selection problem to one of optimal stopping for a sequence of judiciously constructed independent random variables. We demonstrate that our approach allows exact and efficient computation of optimal policies and various performance metrics thereof for a variety of sequential selection problems, several of which have not been solved to date.","PeriodicalId":46216,"journal":{"name":"Probability Surveys","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2019-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A unified approach for solving sequential selection problems\",\"authors\":\"A. Goldenshluger, Y. Malinovsky, A. Zeevi\",\"doi\":\"10.1214/19-ps333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we develop a unified approach for solving a wide class of sequential selection problems. This class includes, but is not limited to, selection problems with no-information, rank-dependent rewards, and considers both fixed as well as random problem horizons. The proposed framework is based on a reduction of the original selection problem to one of optimal stopping for a sequence of judiciously constructed independent random variables. We demonstrate that our approach allows exact and efficient computation of optimal policies and various performance metrics thereof for a variety of sequential selection problems, several of which have not been solved to date.\",\"PeriodicalId\":46216,\"journal\":{\"name\":\"Probability Surveys\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2019-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/19-ps333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/19-ps333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
A unified approach for solving sequential selection problems
In this paper we develop a unified approach for solving a wide class of sequential selection problems. This class includes, but is not limited to, selection problems with no-information, rank-dependent rewards, and considers both fixed as well as random problem horizons. The proposed framework is based on a reduction of the original selection problem to one of optimal stopping for a sequence of judiciously constructed independent random variables. We demonstrate that our approach allows exact and efficient computation of optimal policies and various performance metrics thereof for a variety of sequential selection problems, several of which have not been solved to date.