在Sudler产品的数量级上

IF 1.7 1区 数学 Q1 MATHEMATICS
C. Aistleitner, Niclas Technau, Agamemnon Zafeiropoulos
{"title":"在Sudler产品的数量级上","authors":"C. Aistleitner, Niclas Technau, Agamemnon Zafeiropoulos","doi":"10.1353/ajm.2023.a897495","DOIUrl":null,"url":null,"abstract":"abstract:Given an irrational number $\\alpha\\in(0,1)$, the Sudler product is defined by $P_N(\\alpha) = \\prod_{r=1}^{N}2|\\sin\\pi r\\alpha|$. Answering a question of Grepstad, Kaltenb\\\"ock and Neum\\\"uller we prove an asymptotic formula for distorted Sudler products when $\\alpha$ is the golden ratio $(\\sqrt{5}+1)/2$ and establish that in this case $\\limsup_{N \\to \\infty} P_N(\\alpha)/N < \\infty$. We obtain similar results for quadratic irrationals $\\alpha$ with continued fraction expansion $\\alpha = [a,a,a,\\ldots]$ for some integer $a \\geq 1$, and give a full characterisation of the values of $a$ for which $\\liminf_{N \\to \\infty} P_N(\\alpha)>0$ and $\\limsup_{N \\to \\infty} P_N(\\alpha) / N < \\infty$ hold, respectively. We establish that there is a (sharp) transition point at $a=6$, and resolve as a by-product a problem of the first author, Larcher, Pillichshammer, Saad Eddin, and Tichy.","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":"145 1","pages":"721 - 764"},"PeriodicalIF":1.7000,"publicationDate":"2020-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"On the order of magnitude of Sudler products\",\"authors\":\"C. Aistleitner, Niclas Technau, Agamemnon Zafeiropoulos\",\"doi\":\"10.1353/ajm.2023.a897495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"abstract:Given an irrational number $\\\\alpha\\\\in(0,1)$, the Sudler product is defined by $P_N(\\\\alpha) = \\\\prod_{r=1}^{N}2|\\\\sin\\\\pi r\\\\alpha|$. Answering a question of Grepstad, Kaltenb\\\\\\\"ock and Neum\\\\\\\"uller we prove an asymptotic formula for distorted Sudler products when $\\\\alpha$ is the golden ratio $(\\\\sqrt{5}+1)/2$ and establish that in this case $\\\\limsup_{N \\\\to \\\\infty} P_N(\\\\alpha)/N < \\\\infty$. We obtain similar results for quadratic irrationals $\\\\alpha$ with continued fraction expansion $\\\\alpha = [a,a,a,\\\\ldots]$ for some integer $a \\\\geq 1$, and give a full characterisation of the values of $a$ for which $\\\\liminf_{N \\\\to \\\\infty} P_N(\\\\alpha)>0$ and $\\\\limsup_{N \\\\to \\\\infty} P_N(\\\\alpha) / N < \\\\infty$ hold, respectively. We establish that there is a (sharp) transition point at $a=6$, and resolve as a by-product a problem of the first author, Larcher, Pillichshammer, Saad Eddin, and Tichy.\",\"PeriodicalId\":7453,\"journal\":{\"name\":\"American Journal of Mathematics\",\"volume\":\"145 1\",\"pages\":\"721 - 764\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1353/ajm.2023.a897495\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1353/ajm.2023.a897495","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 12

摘要

文摘:给定一个无理数$\alpha\in(0,1)$,Sudler乘积定义为$P_N(\alpha=\prod_{r=1}^{N}2|\sin\pi-r\alpha|$。在回答Grepstad、Kaltenb和Neum的一个问题时,我们证明了当$\alpha$是黄金比率$(\sqrt{5}+1)/2$时,失真Sudler乘积的一个渐近公式,并证明了在这种情况下$\limsup_{N\to\infty}P_N(\alpha)/N<\infty$。我们得到了类似的二次非理性$\alpha$的结果,对于某个整数$a\geq1$,连续分式展开$\alphar=[a,a,\ldots]$,并分别给出了$a\liminf_{N\to\infty}P_N(\alpha)>0$和$\limsup_{N \to \infty}P_N(\alpha)/N<\infty$保持的$a\的值的完全刻画。我们确定在$a=6$处存在一个(尖锐的)过渡点,并作为副产品解决了第一作者Larcher、Pillichshammer、Saad Eddin和Tichy的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the order of magnitude of Sudler products
abstract:Given an irrational number $\alpha\in(0,1)$, the Sudler product is defined by $P_N(\alpha) = \prod_{r=1}^{N}2|\sin\pi r\alpha|$. Answering a question of Grepstad, Kaltenb\"ock and Neum\"uller we prove an asymptotic formula for distorted Sudler products when $\alpha$ is the golden ratio $(\sqrt{5}+1)/2$ and establish that in this case $\limsup_{N \to \infty} P_N(\alpha)/N < \infty$. We obtain similar results for quadratic irrationals $\alpha$ with continued fraction expansion $\alpha = [a,a,a,\ldots]$ for some integer $a \geq 1$, and give a full characterisation of the values of $a$ for which $\liminf_{N \to \infty} P_N(\alpha)>0$ and $\limsup_{N \to \infty} P_N(\alpha) / N < \infty$ hold, respectively. We establish that there is a (sharp) transition point at $a=6$, and resolve as a by-product a problem of the first author, Larcher, Pillichshammer, Saad Eddin, and Tichy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
35
审稿时长
24 months
期刊介绍: The oldest mathematics journal in the Western Hemisphere in continuous publication, the American Journal of Mathematics ranks as one of the most respected and celebrated journals in its field. Published since 1878, the Journal has earned its reputation by presenting pioneering mathematical papers. It does not specialize, but instead publishes articles of broad appeal covering the major areas of contemporary mathematics. The American Journal of Mathematics is used as a basic reference work in academic libraries, both in the United States and abroad.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信