{"title":"辐射对流平衡的气候敏感性:黑板方法","authors":"N. Jeevanjee","doi":"10.1119/5.0135727","DOIUrl":null,"url":null,"abstract":"Simple models for Earth's climate sensitivity (i.e. its temperature response to radiative forcing) are developed by combining the time-tested idealization of one-dimensional radiative-convective equilibrium (RCE) with simple yet quantitatively reasonable models for CO2 forcing and the water vapor feedback. Along the way, we introduce key paradigms including the emission level approximation, the forcing-feedback decomposition of climate sensitivity, and “Simpson's law” for water vapor thermal emission. We also discuss climate feedbacks unaccounted for in this RCE framework, as well as differing variants of climate sensitivity, all of which may be ripe for their own chalkboard treatments.","PeriodicalId":7589,"journal":{"name":"American Journal of Physics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Climate sensitivity from radiative-convective equilibrium: A chalkboard approach\",\"authors\":\"N. Jeevanjee\",\"doi\":\"10.1119/5.0135727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simple models for Earth's climate sensitivity (i.e. its temperature response to radiative forcing) are developed by combining the time-tested idealization of one-dimensional radiative-convective equilibrium (RCE) with simple yet quantitatively reasonable models for CO2 forcing and the water vapor feedback. Along the way, we introduce key paradigms including the emission level approximation, the forcing-feedback decomposition of climate sensitivity, and “Simpson's law” for water vapor thermal emission. We also discuss climate feedbacks unaccounted for in this RCE framework, as well as differing variants of climate sensitivity, all of which may be ripe for their own chalkboard treatments.\",\"PeriodicalId\":7589,\"journal\":{\"name\":\"American Journal of Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1119/5.0135727\",\"RegionNum\":4,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1119/5.0135727","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
Climate sensitivity from radiative-convective equilibrium: A chalkboard approach
Simple models for Earth's climate sensitivity (i.e. its temperature response to radiative forcing) are developed by combining the time-tested idealization of one-dimensional radiative-convective equilibrium (RCE) with simple yet quantitatively reasonable models for CO2 forcing and the water vapor feedback. Along the way, we introduce key paradigms including the emission level approximation, the forcing-feedback decomposition of climate sensitivity, and “Simpson's law” for water vapor thermal emission. We also discuss climate feedbacks unaccounted for in this RCE framework, as well as differing variants of climate sensitivity, all of which may be ripe for their own chalkboard treatments.
期刊介绍:
The mission of the American Journal of Physics (AJP) is to publish articles on the educational and cultural aspects of physics that are useful, interesting, and accessible to a diverse audience of physics students, educators, and researchers. Our audience generally reads outside their specialties to broaden their understanding of physics and to expand and enhance their pedagogical toolkits at the undergraduate and graduate levels.