用于安全实时关键任务通信的熵服务

IF 1.5 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
E. Zeydan, Yekta Turk, Yaman Yagiz Tasbag
{"title":"用于安全实时关键任务通信的熵服务","authors":"E. Zeydan, Yekta Turk, Yaman Yagiz Tasbag","doi":"10.1002/spy2.258","DOIUrl":null,"url":null,"abstract":"Real Time Mission Critical Communication (RTMCC) in emergency situations can include real‐time video and audio calls between peers and first responders all occurring simultaneously. RTMCC also requires secure end‐to‐end (E2E) group communication (GC) sessions against potential security threats during such incidents. In this paper, we explore all aspects of the possible methods that are suitable for a software implementation of for session key change during GC in E2E encryption of RTMCC. Later, we introduce our Entropy Service concept, which can be very effective in secure E2E RTMCC sessions. The proposed method ensures E2E security in real‐time communication systems while allowing very fast session key change for clients involved in an RTMCC session with a computational complexity of 𝒪(1). Our experimental results show that the proposed Entropy Service can reduce total time by 99.6% and 99.2%, the idle time by 99.4% and 98.99%, and the number of messages by 51.4% and 35.33% compared to the key refreshing and hash methods, respectively, when the number of users in the system increases to 45. These results show that both communication and computation complexity are significantly reduced with the proposed RTMCC session key change.","PeriodicalId":29939,"journal":{"name":"Security and Privacy","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy service for secure real‐time mission critical communications\",\"authors\":\"E. Zeydan, Yekta Turk, Yaman Yagiz Tasbag\",\"doi\":\"10.1002/spy2.258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real Time Mission Critical Communication (RTMCC) in emergency situations can include real‐time video and audio calls between peers and first responders all occurring simultaneously. RTMCC also requires secure end‐to‐end (E2E) group communication (GC) sessions against potential security threats during such incidents. In this paper, we explore all aspects of the possible methods that are suitable for a software implementation of for session key change during GC in E2E encryption of RTMCC. Later, we introduce our Entropy Service concept, which can be very effective in secure E2E RTMCC sessions. The proposed method ensures E2E security in real‐time communication systems while allowing very fast session key change for clients involved in an RTMCC session with a computational complexity of 𝒪(1). Our experimental results show that the proposed Entropy Service can reduce total time by 99.6% and 99.2%, the idle time by 99.4% and 98.99%, and the number of messages by 51.4% and 35.33% compared to the key refreshing and hash methods, respectively, when the number of users in the system increases to 45. These results show that both communication and computation complexity are significantly reduced with the proposed RTMCC session key change.\",\"PeriodicalId\":29939,\"journal\":{\"name\":\"Security and Privacy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Security and Privacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/spy2.258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/spy2.258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

紧急情况下的实时关键任务通信(RTMCC)可以包括同行和急救人员之间同时发生的实时视频和音频呼叫。RTMCC还需要安全的端到端(E2E)组通信(GC)会话,以应对此类事件期间的潜在安全威胁。在本文中,我们探讨了适合于RTMCC端到端加密中GC期间会话密钥更改的软件实现的可能方法的各个方面。稍后,我们将介绍熵服务概念,它在安全的端到端RTMCC会话中非常有效。所提出的方法确保了实时通信系统的端到端安全,同时允许在一个计算复杂度为(1)的RTMCC会话中涉及的客户端进行非常快速的会话密钥更改。实验结果表明,当系统中用户数量增加到45个时,与密钥刷新和哈希方法相比,熵服务的总时间分别减少99.6%和99.2%,空闲时间分别减少99.4%和98.99%,消息数分别减少51.4%和35.33%。结果表明,采用RTMCC会话密钥更改后,通信复杂度和计算复杂度都得到了显著降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entropy service for secure real‐time mission critical communications
Real Time Mission Critical Communication (RTMCC) in emergency situations can include real‐time video and audio calls between peers and first responders all occurring simultaneously. RTMCC also requires secure end‐to‐end (E2E) group communication (GC) sessions against potential security threats during such incidents. In this paper, we explore all aspects of the possible methods that are suitable for a software implementation of for session key change during GC in E2E encryption of RTMCC. Later, we introduce our Entropy Service concept, which can be very effective in secure E2E RTMCC sessions. The proposed method ensures E2E security in real‐time communication systems while allowing very fast session key change for clients involved in an RTMCC session with a computational complexity of 𝒪(1). Our experimental results show that the proposed Entropy Service can reduce total time by 99.6% and 99.2%, the idle time by 99.4% and 98.99%, and the number of messages by 51.4% and 35.33% compared to the key refreshing and hash methods, respectively, when the number of users in the system increases to 45. These results show that both communication and computation complexity are significantly reduced with the proposed RTMCC session key change.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
5.30%
发文量
80
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信