基于深度强化学习的风电场飞轮储能阵列系统分层能量优化

IF 1.9 4区 工程技术 Q4 ENERGY & FUELS
Zhanqiang Zhang, Keqilao Meng, Yu Li, Qing Liu, Huijuan Wu
{"title":"基于深度强化学习的风电场飞轮储能阵列系统分层能量优化","authors":"Zhanqiang Zhang, Keqilao Meng, Yu Li, Qing Liu, Huijuan Wu","doi":"10.1063/5.0141817","DOIUrl":null,"url":null,"abstract":"Due to the volatility and intermittency of renewable energy, injecting large amounts of renewable energy into the grid will have a tremendous impact on the stability and security of the network. In this paper, we propose the hierarchical energy optimization of flywheel energy storage array system (FESAS) applied to smooth the power output of wind farms to realize source-grid-storage intelligent dispatching. The energy dispatching problem of the FESAS is described as a Markov decision process by the actor-critic (AC) algorithm. In order to solve the problems of stability and low sampling efficiency of the AC algorithm, the soft actor-critic (SAC) algorithm, a deep reinforcement learning (DRL) algorithm based on the model-free off-policy method of the maximum entropy framework, is adopted. Furthermore, SAC and prioritized experience replay (PER) are utilized to greatly improve learning efficiency and sample utilization. The experimental results show that SAC-PER has better performance and stability in energy optimization of the FESAS.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hierarchical energy optimization of flywheel energy storage array systems for wind farms based on deep reinforcement learning\",\"authors\":\"Zhanqiang Zhang, Keqilao Meng, Yu Li, Qing Liu, Huijuan Wu\",\"doi\":\"10.1063/5.0141817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the volatility and intermittency of renewable energy, injecting large amounts of renewable energy into the grid will have a tremendous impact on the stability and security of the network. In this paper, we propose the hierarchical energy optimization of flywheel energy storage array system (FESAS) applied to smooth the power output of wind farms to realize source-grid-storage intelligent dispatching. The energy dispatching problem of the FESAS is described as a Markov decision process by the actor-critic (AC) algorithm. In order to solve the problems of stability and low sampling efficiency of the AC algorithm, the soft actor-critic (SAC) algorithm, a deep reinforcement learning (DRL) algorithm based on the model-free off-policy method of the maximum entropy framework, is adopted. Furthermore, SAC and prioritized experience replay (PER) are utilized to greatly improve learning efficiency and sample utilization. The experimental results show that SAC-PER has better performance and stability in energy optimization of the FESAS.\",\"PeriodicalId\":16953,\"journal\":{\"name\":\"Journal of Renewable and Sustainable Energy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Renewable and Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0141817\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0141817","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

摘要

由于可再生能源的波动性和间歇性,向电网注入大量可再生能源将对网络的稳定性和安全性产生巨大影响。在本文中,我们提出了飞轮储能阵列系统(FESAS)的分级能量优化,用于平滑风电场的功率输出,以实现源网储能智能调度。利用actor-critic(AC)算法将FESAS的能量调度问题描述为一个马尔可夫决策过程。为了解决AC算法的稳定性和采样效率低的问题,采用了软因子-批评家(SAC)算法,这是一种基于最大熵框架的模型无关策略方法的深度强化学习(DRL)算法。此外,SAC和优先体验重放(PER)被用来极大地提高学习效率和样本利用率。实验结果表明,SAC-PER在FESAS的能量优化中具有较好的性能和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical energy optimization of flywheel energy storage array systems for wind farms based on deep reinforcement learning
Due to the volatility and intermittency of renewable energy, injecting large amounts of renewable energy into the grid will have a tremendous impact on the stability and security of the network. In this paper, we propose the hierarchical energy optimization of flywheel energy storage array system (FESAS) applied to smooth the power output of wind farms to realize source-grid-storage intelligent dispatching. The energy dispatching problem of the FESAS is described as a Markov decision process by the actor-critic (AC) algorithm. In order to solve the problems of stability and low sampling efficiency of the AC algorithm, the soft actor-critic (SAC) algorithm, a deep reinforcement learning (DRL) algorithm based on the model-free off-policy method of the maximum entropy framework, is adopted. Furthermore, SAC and prioritized experience replay (PER) are utilized to greatly improve learning efficiency and sample utilization. The experimental results show that SAC-PER has better performance and stability in energy optimization of the FESAS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Renewable and Sustainable Energy
Journal of Renewable and Sustainable Energy ENERGY & FUELS-ENERGY & FUELS
CiteScore
4.30
自引率
12.00%
发文量
122
审稿时长
4.2 months
期刊介绍: The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields. Topics covered include: Renewable energy economics and policy Renewable energy resource assessment Solar energy: photovoltaics, solar thermal energy, solar energy for fuels Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics Bioenergy: biofuels, biomass conversion, artificial photosynthesis Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation Power distribution & systems modeling: power electronics and controls, smart grid Energy efficient buildings: smart windows, PV, wind, power management Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies Energy storage: batteries, supercapacitors, hydrogen storage, other fuels Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other Marine and hydroelectric energy: dams, tides, waves, other Transportation: alternative vehicle technologies, plug-in technologies, other Geothermal energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信