色散广义Benjamin—Ono和Benjamin—Ono方程解的衰减

IF 1.5 3区 数学 Q1 MATHEMATICS
Alysson Cunha
{"title":"色散广义Benjamin—Ono和Benjamin—Ono方程解的衰减","authors":"Alysson Cunha","doi":"10.57262/ade027-1112-781","DOIUrl":null,"url":null,"abstract":". We show that uniqueness results of the kind those obtained for KdV and Schr¨odinger equations ([7], [28]), are not valid for the dispersion generalized-Benjamin-Ono equation in the weighted Sobolev spaces for appropriated s and r . In particular, we obtain that the uniqueness result proved for the dispersion generalized- Benjamin-Ono equation ([13]), is not true for all pairs of solutions u 1 6 = 0 and u 2 6 = 0. To achieve these results we employ the techniques present in our recent work [6]. We also improve some Theorems established for the dispersion generalized-Benjamin-Ono equation and for the Benjamin-Ono equation ([13], [12]).","PeriodicalId":53312,"journal":{"name":"Advances in Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On decay of the solutions for the dispersion generalized Benjamin--Ono and Benjamin--Ono equations\",\"authors\":\"Alysson Cunha\",\"doi\":\"10.57262/ade027-1112-781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We show that uniqueness results of the kind those obtained for KdV and Schr¨odinger equations ([7], [28]), are not valid for the dispersion generalized-Benjamin-Ono equation in the weighted Sobolev spaces for appropriated s and r . In particular, we obtain that the uniqueness result proved for the dispersion generalized- Benjamin-Ono equation ([13]), is not true for all pairs of solutions u 1 6 = 0 and u 2 6 = 0. To achieve these results we employ the techniques present in our recent work [6]. We also improve some Theorems established for the dispersion generalized-Benjamin-Ono equation and for the Benjamin-Ono equation ([13], [12]).\",\"PeriodicalId\":53312,\"journal\":{\"name\":\"Advances in Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.57262/ade027-1112-781\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/ade027-1112-781","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

. 我们证明了关于KdV和Schr¨odinger方程([7],[28])的唯一性结果,不适用于分配s和r的加权Sobolev空间中的色散广义benjamin - ono方程。特别地,我们得到了对于弥散广义- Benjamin-Ono方程([13])所证明的唯一性结果,并不是对u 16 = 0和u 26 = 0的所有解对都成立。为了达到这些结果,我们采用了我们最近的工作[6]中的技术。我们还改进了关于色散广义Benjamin-Ono方程和Benjamin-Ono方程([13],[12])的定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On decay of the solutions for the dispersion generalized Benjamin--Ono and Benjamin--Ono equations
. We show that uniqueness results of the kind those obtained for KdV and Schr¨odinger equations ([7], [28]), are not valid for the dispersion generalized-Benjamin-Ono equation in the weighted Sobolev spaces for appropriated s and r . In particular, we obtain that the uniqueness result proved for the dispersion generalized- Benjamin-Ono equation ([13]), is not true for all pairs of solutions u 1 6 = 0 and u 2 6 = 0. To achieve these results we employ the techniques present in our recent work [6]. We also improve some Theorems established for the dispersion generalized-Benjamin-Ono equation and for the Benjamin-Ono equation ([13], [12]).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Differential Equations
Advances in Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Advances in Differential Equations will publish carefully selected, longer research papers on mathematical aspects of differential equations and on applications of the mathematical theory to issues arising in the sciences and in engineering. Papers submitted to this journal should be correct, new and non-trivial. Emphasis will be placed on papers that are judged to be specially timely, and of interest to a substantial number of mathematicians working in this area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信